Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
HK bisect QS
lssl   24
N an hour ago by LeYohan
Source: 1998 HK
In a concyclic quadrilateral $PQRS$,$\angle PSR=\frac{\pi}{2}$ , $H,K$ are perpendicular foot from $Q$ to sides $PR,RS$ , prove that $HK$ bisect segment$SQ$.
24 replies
lssl
Jan 5, 2012
LeYohan
an hour ago
Points in general position
AshAuktober   3
N 2 hours ago by blackbluecar
Source: 2025 Nepal ptst p1 of 4
Shining tells Prajit a positive integer $n \ge 2025$. Prajit then tries to place n points such that no four points are concyclic and no $3$ points are collinear in Euclidean plane, such that Shining cannot find a group of three points such that their circumcircle contains none of the other remaining points. Is he always able to do so?

(Prajit Adhikari, Nepal and Shining Sun, USA)
3 replies
AshAuktober
Mar 15, 2025
blackbluecar
2 hours ago
Interesting inequalities
sqing   2
N 2 hours ago by sqing
Source: Own
Let $ a,b,c>0 $ and $ a+b\leq 16abc. $ Prove that
$$ a+b+kc\geq\sqrt{k}$$$$ a+b+kc^2\geq\frac{3\sqrt[3]{k}}{4}$$Where $ k>0. $
$$ a+b+c\geq1$$$$ a+b+4c\geq2$$$$ a+b+c^2\geq\frac{3}{4}$$$$ a+b+8c^2\geq\frac{3}{2}$$
2 replies
sqing
Yesterday at 12:23 PM
sqing
2 hours ago
IMO 2014 Problem 1
Amir Hossein   132
N 2 hours ago by maromex
Let $a_0 < a_1 < a_2 < \dots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that
\[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\]
Proposed by Gerhard Wöginger, Austria.
132 replies
Amir Hossein
Jul 8, 2014
maromex
2 hours ago
IMO Genre Predictions
ohiorizzler1434   31
N 2 hours ago by ohiorizzler1434
Everybody, with IMO upcoming, what are you predictions for the problem genres?


Personally I predict: predict
31 replies
ohiorizzler1434
Saturday at 6:51 AM
ohiorizzler1434
2 hours ago
weird FE
tobiSALT   10
N 2 hours ago by NicoN9
Source: Pan American Girls' Mathematical Olympiad 2024, P5
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
$f(f(x+y) - f(x)) + f(x)f(y) = f(x^2) - f(x+y),$

for all real numbers $x, y$.
10 replies
tobiSALT
Nov 27, 2024
NicoN9
2 hours ago
2015 solutions for quotient function!
raxu   49
N 2 hours ago by blueprimes
Source: TSTST 2015 Problem 5
Let $\varphi(n)$ denote the number of positive integers less than $n$ that are relatively prime to $n$. Prove that there exists a positive integer $m$ for which the equation $\varphi(n)=m$ has at least $2015$ solutions in $n$.

Proposed by Iurie Boreico
49 replies
raxu
Jun 26, 2015
blueprimes
2 hours ago
Cosine of polynomial is polynomial of cosine
yofro   1
N 3 hours ago by yofro
Source: 2025 HMIC #2
Find all polynomials $P$ with real coefficients for which there exists a polynomial $Q$ with real coefficients such that for all real $t$, $$\cos(P(t))=Q(\cos t).$$
1 reply
yofro
3 hours ago
yofro
3 hours ago
Problem 1
randomusername   72
N 3 hours ago by blueprimes
Source: IMO 2015, Problem 1
We say that a finite set $\mathcal{S}$ of points in the plane is balanced if, for any two different points $A$ and $B$ in $\mathcal{S}$, there is a point $C$ in $\mathcal{S}$ such that $AC=BC$. We say that $\mathcal{S}$ is centre-free if for any three different points $A$, $B$ and $C$ in $\mathcal{S}$, there is no points $P$ in $\mathcal{S}$ such that $PA=PB=PC$.

(a) Show that for all integers $n\ge 3$, there exists a balanced set consisting of $n$ points.

(b) Determine all integers $n\ge 3$ for which there exists a balanced centre-free set consisting of $n$ points.

Proposed by Netherlands
72 replies
randomusername
Jul 10, 2015
blueprimes
3 hours ago
Permutation with no two prefix sums dividing each other
Assassino9931   2
N 4 hours ago by Assassino9931
Source: Bulgaria Team Contest, March 2025, oVlad
Does there exist an infinite sequence of positive integers $a_1, a_2 \ldots$, such that every positive integer appears exactly once as a member of the sequence and $a_1 + a_2 + \cdots + a_i$ divides $a_1 + a_2 + \cdots + a_j$ if and only if $i=j$?
2 replies
Assassino9931
4 hours ago
Assassino9931
4 hours ago
a