Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
A sharp one with 3 var
mihaig   4
N 13 minutes ago by arqady
Source: Own
Let $a,b,c\geq0$ satisfying
$$\left(a+b+c-2\right)^2+8\leq3\left(ab+bc+ca\right).$$Prove
$$ab+bc+ca+abc\geq4.$$
4 replies
mihaig
May 13, 2025
arqady
13 minutes ago
Inequality on APMO P5
Jalil_Huseynov   41
N an hour ago by Mathandski
Source: APMO 2022 P5
Let $a,b,c,d$ be real numbers such that $a^2+b^2+c^2+d^2=1$. Determine the minimum value of $(a-b)(b-c)(c-d)(d-a)$ and determine all values of $(a,b,c,d)$ such that the minimum value is achived.
41 replies
Jalil_Huseynov
May 17, 2022
Mathandski
an hour ago
APMO 2016: one-way flights between cities
shinichiman   18
N 2 hours ago by Mathandski
Source: APMO 2016, problem 4
The country Dreamland consists of $2016$ cities. The airline Starways wants to establish some one-way flights between pairs of cities in such a way that each city has exactly one flight out of it. Find the smallest positive integer $k$ such that no matter how Starways establishes its flights, the cities can always be partitioned into $k$ groups so that from any city it is not possible to reach another city in the same group by using at most $28$ flights.

Warut Suksompong, Thailand
18 replies
shinichiman
May 16, 2016
Mathandski
2 hours ago
Circles intersecting each other
rkm0959   9
N 2 hours ago by Mathandski
Source: 2015 Final Korean Mathematical Olympiad Day 2 Problem 6
There are $2015$ distinct circles in a plane, with radius $1$.
Prove that you can select $27$ circles, which form a set $C$, which satisfy the following.

For two arbitrary circles in $C$, they intersect with each other or
For two arbitrary circles in $C$, they don't intersect with each other.
9 replies
rkm0959
Mar 22, 2015
Mathandski
2 hours ago
Max value
Hip1zzzil   0
2 hours ago
Source: KMO 2025 Round 1 P12
Three distinct nonzero real numbers $x,y,z$ satisfy:

(i)$2x+2y+2z=3$
(ii)$\frac{1}{xz}+\frac{x-y}{y-z}=\frac{1}{yz}+\frac{y-z}{z-x}=\frac{1}{xy}+\frac{z-x}{x-y}$
Find the maximum value of $18x+12y+6z$.
0 replies
Hip1zzzil
2 hours ago
0 replies
2018 Hong Kong TST2 problem 4
YanYau   4
N 2 hours ago by Mathandski
Source: 2018HKTST2P4
In triangle $ABC$ with incentre $I$, let $M_A,M_B$ and $M_C$ by the midpoints of $BC, CA$ and $AB$ respectively, and $H_A,H_B$ and $H_C$ be the feet of the altitudes from $A,B$ and $C$ to the respective sides. Denote by $\ell_b$ the line being tangent tot he circumcircle of triangle $ABC$ and passing through $B$, and denote by $\ell_b'$ the reflection of $\ell_b$ in $BI$. Let $P_B$ by the intersection of $M_AM_C$ and $\ell_b$, and let $Q_B$ be the intersection of $H_AH_C$ and $\ell_b'$. Defined $\ell_c,\ell_c',P_C,Q_C$ analogously. If $R$ is the intersection of $P_BQ_B$ and $P_CQ_C$, prove that $RB=RC$.
4 replies
YanYau
Oct 21, 2017
Mathandski
2 hours ago
Prove that the triangle is isosceles.
TUAN2k8   4
N 2 hours ago by JARP091
Source: My book
Given acute triangle $ABC$ with two altitudes $CF$ and $BE$.Let $D$ be the point on the line $CF$ such that $DB \perp BC$.The lines $AD$ and $EF$ intersect at point $X$, and $Y$ is the point on segment $BX$ such that $CY \perp BY$.Suppose that $CF$ bisects $BE$.Prove that triangle $ACY$ is isosceles.
4 replies
TUAN2k8
Yesterday at 9:55 AM
JARP091
2 hours ago
Pythagoras...
Hip1zzzil   0
2 hours ago
Source: KMO 2025 Round 1 P20
Find the sum of all $k$s such that:
There exists two odd positive integers $a,b$ such that ${k}^{2}={a}^{2b}+{(2b)}^{4}.$
0 replies
Hip1zzzil
2 hours ago
0 replies
Hard Function
johnlp1234   2
N 2 hours ago by maromex
Find all function $f:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that:
$$f(x^3+f(y))=y+(f(x))^3$$
2 replies
johnlp1234
Jul 8, 2020
maromex
2 hours ago
Guangxi High School Mathematics Competition 2025 Q12
sqing   3
N 2 hours ago by sqing
Source: China Guangxi High School Mathematics Competition 2025 Q12
Let $ a,b,c>0  $. Prove that
$$abc\geq \frac {a+b+c}{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }\geq(a+b-c)(b+c-a)(c+a-b)$$
3 replies
sqing
3 hours ago
sqing
2 hours ago
Hard Function
johnlp1234   4
N 2 hours ago by jasperE3
f:R+--->R+:
f(x^3+f(y))=y+(f(x))^3
4 replies
johnlp1234
Jul 7, 2020
jasperE3
2 hours ago
Inequality with n-gon sides
mihaig   3
N Apr 22, 2025 by mihaig
Source: VL
If $a_1,a_2,\ldots, a_n~(n\geq3)$ are are the lengths of the sides of a $n-$gon such that
$$\sum_{i=1}^{n}{a_i}=1,$$then
$$(n-2)\left[\sum_{i=1}^{n}{\frac{a_i^2}{(1-a_i)^2}}-\frac n{(n-1)^2}\right]\geq(2n-1)\left(\sum_{i=1}^{n}{\frac{a_i}{1-a_i}}-\frac n{n-1}\right)^2.$$
When do we have equality?

(V. Cîrtoaje and L. Giugiuc, 2021)
3 replies
mihaig
Feb 25, 2022
mihaig
Apr 22, 2025
Inequality with n-gon sides
G H J
G H BBookmark kLocked kLocked NReply
Source: VL
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mihaig
7367 posts
#1 • 1 Y
Y by dragonheart6
If $a_1,a_2,\ldots, a_n~(n\geq3)$ are are the lengths of the sides of a $n-$gon such that
$$\sum_{i=1}^{n}{a_i}=1,$$then
$$(n-2)\left[\sum_{i=1}^{n}{\frac{a_i^2}{(1-a_i)^2}}-\frac n{(n-1)^2}\right]\geq(2n-1)\left(\sum_{i=1}^{n}{\frac{a_i}{1-a_i}}-\frac n{n-1}\right)^2.$$
When do we have equality?

(V. Cîrtoaje and L. Giugiuc, 2021)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mihaig
7367 posts
#2
Y by
Taken from http://matinf.upit.ro/
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mihaig
7367 posts
#3
Y by
Medium...not very difficult
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mihaig
7367 posts
#4
Y by
Old, yet new
Z K Y
N Quick Reply
G
H
=
a