1952 AHSME Problems/Problem 11

Problem

If $y=f(x)=\frac{x+2}{x-1}$, then it is incorrect to say:

$\textbf{(A)\ }x=\frac{y+2}{y-1}\qquad\textbf{(B)\ }f(0)=-2\qquad\textbf{(C)\ }f(1)=0\qquad$

$\textbf{(D)\ }f(-2)=0\qquad\textbf{(E)\ }f(y)=x$

Solution

$f(1)=\frac{3}{0}$, which is undefined. Hence, the (in)correct answer is $\boxed{\textbf{(C)}\ f(1)=0}$. We can verify that the other statements are valid.

$\textbf{(A).\ } y=\frac{x+2}{x-1}\implies xy-y=x+2\implies x(y-1)=y+2\implies x=\frac{y+2}{y-1}$

$\textbf{(B).\ } f(0)=\frac{(0)+2}{(0)-1}=-2$

$\textbf{(D).\ } f(-2)=\frac{(-2)+2}{(-2)-1}=\frac{0}{-3}=0$

$\textbf{(E).\ } f(y)=\frac{\frac{x+2}{x-1}+2}{\frac{x+2}{x-1}-1}=\frac{3x}{3}=x$

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png