1952 AHSME Problems/Problem 8

Problem

Two equal circles in the same plane cannot have the following number of common tangents.

$\textbf{(A) \ }1  \qquad \textbf{(B) \ }2 \qquad \textbf{(C) \ }3 \qquad \textbf{(D) \ }4 \qquad \textbf{(E) \ }\text{none of these}$

Solution

Two congruent coplanar circles will either be tangent to one another (resulting in $3$ common tangents), intersect one another (resulting in $2$ common tangents), or be separate from one another (resulting in $4$ common tangents). Having only $\boxed{\textbf{(A)}\ 1}$ common tangent is impossible, unless the circles are non-congruent and internally tangent.

[asy] pair A=(1,0), B=(-1,0), C=(-5,0), D=(-6,0), E=(5,0), F=(8,0); draw(circle(A,1)); draw(circle(B,1)); draw(circle(C,1)); draw(circle(D,1)); draw(circle(E,1)); draw(circle(F,1)); draw((0,1)--(0,-1),red); draw((-2,1)--(2,1),red); draw((-2,-1)--(2,-1),red); draw((-7,1)--(-4,1),red); draw((-7,-1)--(-4,-1),red); draw((4,1)--(9,1),red); draw((4,-1)--(9,-1),red); draw((5+0.5sqrt(2),0.5sqrt(2))--(8-0.5sqrt(2),-0.5sqrt(2)),red); draw((5+0.5sqrt(2),-0.5sqrt(2))--(8-0.5sqrt(2),0.5sqrt(2)),red); label("$3$",(-1.5,0),E); label("$1$",(0,0.75),N); label("$2$",(0,-0.75),S); label("$1$",(-5.5,0.75),N); label("$2$",(-5.5,-0.75),S); label("$1$",(6.5,0.75),N); label("$2$",(6.5,-0.75),S); label("$3$",(6.5,-0.25),N); label("$4$",(6.5,0.25),S); [/asy]

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png