1952 AHSME Problems/Problem 24

Problem

In the figure, it is given that angle $C = 90^{\circ}$, $\overline{AD} = \overline{DB}$, $DE \perp AB$, $\overline{AB} = 20$, and $\overline{AC} = 12$. The area of quadrilateral $ADEC$ is: [asy] unitsize(7); defaultpen(linewidth(.8pt)+fontsize(10pt)); pair A,B,C,D,E; A=(0,0); B=(20,0); C=(36/5,48/5); D=(10,0); E=(10,75/10); draw(A--B--C--cycle); draw(D--E); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NE); draw(rightanglemark(B,D,E,30)); [/asy]

$\textbf{(A)}\ 75\qquad\textbf{(B)}\ 58\frac{1}{2}\qquad\textbf{(C)}\ 48\qquad\textbf{(D)}\ 37\frac{1}{2}\qquad\textbf{(E)}\ \text{none of these}$

Solution

$[ADEC]=[BCA]-[BDE]$

Note that, as right triangles sharing $\angle B$, $\triangle BDE \sim \triangle BCA$.

$\overline{BD}=\frac{20}{2}=10$

Because the sides of $\triangle BCA$ are in the ratio $3:4:5$, $\overline{BC}=16$.

The sides of our triangles are in the ratio $\frac{10}{16}=\frac{5}{8}$, and the ratio of their areas is $\left(\frac{5}{8}\right)^2=\frac{25}{64}$.

$[BCA]=\frac{12 \cdot 16}{2}=96$, and $[BDE]=\frac{96 \cdot 25}{64}=\frac{75}{2}$.

$[ADEC]=\frac{192-75}{2}=\boxed{\textbf{(B)}\ 58\frac{1}{2}}$

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png