# 1964 AHSME Problems/Problem 16

## Problem

Let $f(x)=x^2+3x+2$ and let $S$ be the set of integers $\{0, 1, 2, \dots , 25 \}$. The number of members $s$ of $S$ such that $f(s)$ has remainder zero when divided by $6$ is:

$\textbf{(A)}\ 25\qquad \textbf{(B)}\ 22\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 17$

## Solution $1$

Note that for all polynomials $f(x)$, $f(x + 6) \equiv f(x) \pmod 6$.

Proof: If $f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_0$, then $f(x+6) = a_n(x+6)^n + a_{n-1}(x+6)^{n-1} +...+ a_0$. In the second equation, we can use the binomial expansion to expand every term, and then subtract off all terms that have a factor of $6^1$ or higher, since subtracting a multiple of $6$ will not change congruence $\pmod 6$. This leaves $a_nx^n + a_{n-1}x^{n-1} + ... + a_0$, which is $f(x)$, so $f(x+6) \equiv f(x) \pmod 6$.

So, we only need to test when $f(x)$ has a remainder of $0$ for $0, 1, 2, 3, 4, 5$. The set of numbers $6, 7, 8, 9, 10, 11$ will repeat remainders, as will all other sets. The remainders are $2, 0, 0, 2, 0, 0$.

This means for $s=1, 2, 4, 5$, $f(s)$ is divisible by $6$. Since $f(1)$ is divisible, so is $f(s)$ for $s=7, 13, 19, 25$, which is $5$ values of $s$ that work. Since $f(2)$ is divisible, so is $f(s)$ for $s=8, 14, 20$, which is $4$ more values of $s$ that work. The values of $s=4, 5$ will also generate $4$ solutions each, just like $f(2)$. This is a total of $17$ values of $s$, for an answer of $\boxed{\textbf{(E)}}$

## Solution 2

• We know that,

$f(x)$ = $x^2$ +$3x$ + $2$ is $0$ congruent modulo 6 that implies $x+1$ or/and $x+2$ is $0$ congruent modulo $6$.The numbers are of the form $6k+5$ and $6k+4$ for some integer $k$ and due to restrictions of number of elements in the set $S$ we get the inequality $k<4$.Then we calculate the possible combinations to get $17$ as answer i.e. option $\boxed{\textbf{(E)}}$.

                                                                                                                                               $Solution$ $by$ $GEOMETRY-WIZARD$


THE above solution does not give you the answer there are more cases, $f(x)$ = $x^2$ + $3x$ + $2$ is congruent to $0$ modulo 6 this has 4 cases, When,

• $x+1$$0$(mod 6)
• $x+2$$0$(mod 6)
• $x+1$$2$(mod 6), $x+2$$3$ (mod 6)
• $x+1$$0$ (mod 6), then $x+2$$4$ (mod 6), which satisfies.

Therefore by solvin' these cases we get 17.

$EDITED$ $by$ $RNVAA$