1964 AHSME Problems/Problem 24
Contents
[hide]Problem
Let constants. For what value of is a minimum?
Solution 1
Expanding the quadratic and collecting terms gives . For a quadratic of the form with , is minimized when , which is the average of the roots.
Thus, the quadratic is minimized when , which is answer .
Solution 2
The problem should return real values for and , which eliminates and . We want to distinguish between options , and testing should do that, as answers will turn into , respectively.
PLugging in gives , or . This has a minimum at , or at . This is answer .
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.