1971 AHSME Problems/Problem 24

Problem

[asy] label("$1$",(0,0),S); label("$1$",(-1,-1),S); label("$1$",(-2,-2),S); label("$1$",(-3,-3),S); label("$1$",(-4,-4),S); label("$1$",(1,-1),S); label("$1$",(2,-2),S); label("$1$",(3,-3),S); label("$1$",(4,-4),S); label("$2$",(0,-2),S); label("$3$",(-1,-3),S); label("$3$",(1,-3),S); label("$4$",(-2,-4),S); label("$4$",(2,-4),S); label("$6$",(0,-4),S); label("etc.",(0,-5),S); //Credit to chezbgone2 for the diagram[/asy]

Solution

The first row has $1$ one, and all the other rows have $2$ ones. Thus, the total number of ones in the first $n$ rows is $1+2(n-1)=2n-1$. The total number of elements in the first $n$ rows is $1+2+3+\ldots+n$, which is the $n$th triangular number, $\tfrac{n(n+1)}2$. Thus, the number of elements excluding ones is $\tfrac{n(n+1)}2-(2n-1)$. Thus, our desired quotient is $\frac{\tfrac{n(n+1)}2-(2n-1)}{2n-1} = \frac{n^2+n-2(2n-1)}{2(2n-1)} = \boxed{\textbf{(D) }\frac{n^2-3n+2}{4n-2}}$.

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png