# 1974 AHSME Problems/Problem 30

## Problem

A line segment is divided so that the lesser part is to the greater part as the greater part is to the whole. If $R$ is the ratio of the lesser part to the greater part, then the value of $$R^{[R^{(R^2+R^{-1})}+R^{-1}]}+R^{-1}$$

is $\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }2R \qquad \mathrm{(C) \ } R^{-1} \qquad \mathrm{(D) \ } 2+R^{-1} \qquad \mathrm{(E) \ }2+R$

## Solution

Let $w$ be the length of the shorter segment and $l$ be the length of the longer segment. We're given that $\frac{w}{l}=\frac{l}{w+l}$. Cross-multiplying, we find that $w^2+wl=l^2\implies w^2+wl-l^2=0$. Now we divide both sides by $l^2$ to get $\left(\frac{w}{l}\right)^2+\left(\frac{w}{l}\right)-1=0$. Therefore, $R^2+R-1=0$.

From this, we have $R^2=-R+1$. Dividing both sides by $R$, we get $R=-1+\frac{1}{R}\implies R^{-1}=R+1$. Therefore, $R^2+R^{-1}=-R+1+R+1=2$. Finally, we have $$R^{[R^{(R^2+R^{-1})}+R^{-1}]}+R^{-1}=R^{[R^2+R^{-1}]}+R^{-1}=R^2+R^{-1}= \boxed{\textbf{(A)}2}.$$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 