1992 AJHSME Problems/Problem 16

Problem

[asy] draw(ellipse((0,-5),10,3)); fill((-10,-5)--(10,-5)--(10,5)--(-10,5)--cycle,white); draw(ellipse((0,0),10,3)); draw((10,0)--(10,-5)); draw((-10,0)--(-10,-5));  draw((0,0)--(7,-3*sqrt(51)/10)); label("10",(7/2,-3*sqrt(51)/20),NE); label("5",(-10,-3),E); [/asy]

Which cylinder has twice the volume of the cylinder shown above?

[asy] unitsize(4);  draw(ellipse((0,-5),20,6)); fill((-20,-5)--(20,-5)--(20,5)--(-20,5)--cycle,white); draw(ellipse((0,0),20,6)); draw((20,0)--(20,-5)); draw((-20,0)--(-20,-5)); draw((0,0)--(14,-3*sqrt(51)/5)); label("20",(7,-3*sqrt(51)/10),NE); label("5",(-20,-4),E); label("(A)",(0,6),N);  draw(ellipse((31,-7),10,3)); fill((21,-7)--(41,-7)--(41,7)--(21,7)--cycle,white); draw(ellipse((31,3),10,3)); draw((41,3)--(41,-7)); draw((21,3)--(21,-7)); draw((31,3)--(38,3-3*sqrt(51)/10)); label("10",(34.5,3-3*sqrt(51)/20),NE); label("10",(21,-4),E); label("(B)",(31,6),N);  draw(ellipse((47,-15.5),5,3/2)); fill((42,-15.5)--(42,-15.5)--(42,15.5)--(42,15.5)--cycle,white); draw(ellipse((47,4.5),5,3/2)); draw((42,4.5)--(42,-15.5)); draw((52,4.5)--(52,-15.5)); draw((47,4.5)--(50.5,4.5-3*sqrt(51)/20)); label("5",(48.75,4.5-3*sqrt(51)/40),NE); label("10",(42,-6),E); label("(C)",(47,6),N);  draw(ellipse((73,-10),20,6)); fill((53,-10)--(93,-10)--(93,5)--(53,5)--cycle,white); draw(ellipse((73,0),20,6)); draw((53,0)--(53,-10)); draw((93,0)--(93,-10)); draw((73,0)--(87,-3*sqrt(51)/5)); label("20",(80,-3*sqrt(51)/10),NE); label("10",(53,-6),E); label("(D)",(73,6),N); [/asy]

$\text{(E)}\ \text{None of the above}$

Solution

The volume of a cylinder is given by the formula $V=\pi r^2 h$. The given cylinder therefore has a volume of $\pi (10)^2(5)=500\pi$. Plugging in the radius and height of the answer choices, we find the cylinder that has a volume of double the volume is $\pi (10)^2(10) = 1000\pi \rightarrow \boxed{(B)}$.

See Also

1992 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS