During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

1992 AJHSME Problems/Problem 17

Problem

The sides of a triangle have lengths $6.5$, $10$, and $s$, where $s$ is a whole number. What is the smallest possible value of $s$?

[asy] pair A,B,C; A=origin; B=(10,0); C=6.5*dir(15); dot(A); dot(B); dot(C); draw(B--A--C); draw(B--C,dashed); label("$6.5$",3.25*dir(15),NNW); label("$10$",(5,0),S); label("$s$",(8,1),NE); [/asy]

$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7$

Solution

By Triangle Inequality, $6.5 + s >10$ and therefore $s>3.5$. The smallest whole number that satisfies this is $\boxed{\text{(B)}\ 4}$.

See Also

1992 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS