1993 AJHSME Problems/Problem 14

Problem

The nine squares in the table shown are to be filled so that every row and every column contains each of the numbers $1,2,3$. Then $A+B=$

\[\begin{tabular}{|c|c|c|}\hline 1 & &\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular}\]

$\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6$

Solution

The square connected both to 1 and 2 cannot be the same as either of them, so must be 3.

\[\begin{tabular}{|c|c|c|}\hline 1 & 3 &\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular}\]

The last square in the top row cannot be either 1 or 3, so it must be 2.

\[\begin{tabular}{|c|c|c|}\hline 1 & 3 & 2\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular}\]

The other two squares in the rightmost column with A and B cannot be two, so they must be 1 and 3 and therefore have a sum of $1+3=\boxed{\text{(C)}\ 4}$.

See Also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png