2010 AIME II Problems/Problem 12
Contents
Problem
Two noncongruent integer-sided isosceles triangles have the same perimeter and the same area. The ratio of the lengths of the bases of the two triangles is . Find the minimum possible value of their common perimeter.
Solution 1
Let be the semiperimeter of the two triangles. Also, let the base of the longer triangle be and the base of the shorter triangle be for some arbitrary factor . Then, the dimensions of the two triangles must be and . By Heron's Formula, we have
Since and are coprime, to minimize, we must have and . However, we want the minimum perimeter. This means that we must multiply our minimum semiperimeter by , which gives us a final answer of .
Solution 2
Let the first triangle have sides , so the second has sides . The height of the first triangle is the height of the second triangle. Therefore, we have Multiplying this, we get which simplifies to Solving this for , we get , so and and the perimeter is .
~john0512
Note
We use and instead of and to ensure that the triangle has integral side lengths. Plugging and directly into Heron's gives , but for this to be true, the second triangle would have side lengths of , which is impossible.
~jd9
See also
Video Solution: https://www.youtube.com/watch?v=IUxOyPH8b4o
2010 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.