# 2010 AIME II Problems/Problem 5

## Problem

Positive numbers $x$, $y$, and $z$ satisfy $xyz = 10^{81}$ and $(\log_{10}x)(\log_{10} yz) + (\log_{10}y) (\log_{10}z) = 468$. Find $\sqrt {(\log_{10}x)^2 + (\log_{10}y)^2 + (\log_{10}z)^2}$.

## Solution

Using the properties of logarithms, $\log_{10}xyz = 81$ by taking the log base 10 of both sides, and $(\log_{10}x)(\log_{10}y) + (\log_{10}x)(\log_{10}z) + (\log_{10}y)(\log_{10}z)= 468$ by using the fact that $\log_{10}ab = \log_{10}a + \log_{10}b$.

Through further simplification, we find that $\log_{10}x+\log_{10}y+\log_{10}z = 81$. It can be seen that there is enough information to use the formula $\ (a+b+c)^{2} = a^{2}+b^{2}+c^{2}+2ab+2ac+2bc$, as we have both $\ a+b+c$ and $\ 2ab+2ac+2bc$, and we want to find $\sqrt {a^2 + b^2 + c^2}$.

After plugging in the values into the equation, we find that $\ (\log_{10}x)^2 + (\log_{10}y)^2 + (\log_{10}z)^2$ is equal to $\ 6561 - 936 = 5625$.

However, we want to find $\sqrt {(\log_{10}x)^2 + (\log_{10}y)^2 + (\log_{10}z)^2}$, so we take the square root of $\ 5625$, or $\boxed{075}$.

## Solution 2 $a = \log{x}$ $b = \log{y}$ $c = \log{z}$ $xyz = 10^{81}$ $\log{xyz} = 81$ $\log{x} + \log{y} + \log{z} = 81$ $a + b + c = 81$ $\log{x}(\log{yz}) + \log{y}\log{z} = \log{x}(\log{y} + \log{z}) + \log{y}\log{z} = ab + ac + bc = 468$ $a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 6561$ $a^2 + b^2 + c^2 = 5625 = 75^2$ $\sqrt{\log{x^2} + \log{y^2} + \log{z^2}} = \sqrt{a^2 + b^2 + c^2} = \boxed{075}$

## Video solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 