2012 AMC 12B Problems/Problem 10

Problem

What is the area of the polygon whose vertices are the points of intersection of the curves $x^2 + y^2 =25$ and $(x-4)^2 + 9y^2 = 81 ?$

$\textbf{(A)}\ 24\qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 37.5\qquad\textbf{(E)}\ 42$

Solution 1

The first curve is a circle with radius $5$ centered at the origin, and the second curve is an ellipse with center $(4,0)$ and end points of $(-5,0)$ and $(13,0)$. Finding points of intersection, we get $(-5,0)$, $(4,3)$, and $(4,-3)$, forming a triangle with height of $9$ and base of $6.$ So the area of this triangle is $9 \cdot 6 \cdot 0.5 =27 \textbf{ (B)}.$

Solution 2

Given the equations $x^2 + y^2 =25$ and $(x-4)^2 + 9y^2 = 81$, we can substitute $y^2=25-x^2$ from the first equation and plug it in to the 2nd equation, giving us $(x-4)^2+9(25-x^2)=81$. After rearranging, $8x^2+8x-160=0$ or $x^2+x-20=0$. The solutions are $x=-5$ and $x=4$. This gives us the points $(-5,0),(4,3)$,and $(4,-3)$. The area of the triangle formed by these points is $27=\fbox{B}$

~dragnin

~minor edits by KevinChen_Yay

Solution 3

Using our algebra skills we find the points of intersection to be $(-5,0),(4,3)$,and $(4,-3)$. Using the shoelace theorem, we can easily find the area of the triangle to be $27=\fbox{B}$.

~PeterDoesPhysics

More information on the shoelace theorem: https://artofproblemsolving.com/wiki/index.php/Shoelace_Theorem

See Also

2012 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

extremely misplaced problem. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png