2012 AMC 8 Problems/Problem 17

Problem

A square with integer side length is cut into 10 squares, all of which have integer side length and at least 8 of which have area 1. What is the smallest possible value of the length of the side of the original square?

$\textbf{(A)}\hspace{.05in}3\qquad\textbf{(B)}\hspace{.05in}4\qquad\textbf{(C)}\hspace{.05in}5\qquad\textbf{(D)}\hspace{.05in}6\qquad\textbf{(E)}\hspace{.05in}7$

Solution

The first answer choice ${\textbf{(A)}\ 3}$, can be eliminated since there must be $10$ squares with integer side lengths. We then test the next smallest sidelength which is $4$. The square with area $16$ can be partitioned into $8$ squares with area $1$ and two squares with area $4$, which satisfies all the conditions of the problem. Therefore, the smallest possible value of the length of the side of the original square is $\boxed{\textbf{(B)}\ 4}$.

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS