2013 AIME II Problems/Problem 2

Problem 2

Positive integers $a$ and $b$ satisfy the condition \[\log_2(\log_{2^a}(\log_{2^b}(2^{1000}))) = 0.\] Find the sum of all possible values of $a+b$.


To simplify, we write this logarithmic expression as an exponential one. Just looking at the first log, it has a base of 2 and an argument of the expression in parenthesis. Therefore, we can make 2 the base, 0 the exponent, and the argument the result. That means $\log_{2^a}(\log_{2^b}(2^{1000}))=1$ (because $2^0=1$). Doing this again, we get $\log_{2^b}(2^{1000})=2^a$. Doing the process one more time, we finally eliminate all of the logs, getting ${(2^{b})}^{(2^a)}=2^{1000}$. Using the property that ${(a^x)^{y}}=a^{xy}$, we simplify to $2^{b\cdot2^{a}}=2^{1000}$. Eliminating equal bases leaves $b\cdot2^a=1000$. The largest $a$ such that $2^a$ divides $1000$ is $3$, so we only need to check $1$,$2$, and $3$. When $a=1$, $b=500$; when $a=2$, $b=250$; when $a=3$, $b=125$. Summing all the $a$'s and $b$'s gives the answer of $\boxed{881}$.

See also

2013 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS