2017 AMC 8 Problems/Problem 21

Problem

Suppose $a$, $b$, and $c$ are nonzero real numbers, and $a+b+c=0$. What are the possible value(s) for $\frac{a}{|a|}+\frac{b}{|b|}+\frac{c}{|c|}+\frac{abc}{|abc|}$?

$\textbf{(A) }0\qquad\textbf{(B) }1\text{ and }-1\qquad\textbf{(C) }2\text{ and }-2\qquad\textbf{(D) }0,2,\text{ and }-2\qquad\textbf{(E) }0,1,\text{ and }-1$

Solution

There are $2$ cases to consider:

Case $1$: $2$ of $a$, $b$, and $c$ are positive and the other is negative. Without loss of generality (WLOG), we can assume that $a$ and $b$ are positive and $c$ is negative. In this case, we have that \[\frac{a}{|a|}+\frac{b}{|b|}+\frac{c}{|c|}+\frac{abc}{|abc|}=1+1-1-1=0.\]

Case $2$: $2$ of $a$, $b$, and $c$ are negative and the other is positive. WLOG, we can assume that $a$ and $b$ are negative and $c$ is positive. In this case, we have that \[\frac{a}{|a|}+\frac{b}{|b|}+\frac{c}{|c|}+\frac{abc}{|abc|}=-1-1+1+1=0.\]

Note these are the only valid cases, for neither $3$ negatives nor $3$ positives would work as they cannot sum up to $0$. In both cases, we get that the given expression equals $\boxed{\textbf{(A)}\ 0}$.

Video Solution (CREATIVE THINKING + ANALYSIS!!!)

https://youtu.be/wPVQwzA-2hU

~Education, the Study of Everything

Video Solution by OmegaLearn

https://youtu.be/7an5wU9Q5hk?t=2362

Video Solutions

https://youtu.be/FUEHirfk-tw

https://youtu.be/V9wCBTwvIZo

- Happytwin

https://youtu.be/xN0dnJC1hv8

~savannahsolver

https://www.youtube.com/watch?v=u6M6ECGok1o

- SUS

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions