2017 AMC 8 Problems/Problem 5
Contents
[hide]Problem
What is the value of the expression ?
Solution 1
Directly calculating:
We evaluate both the top and bottom: . This simplifies to .
Solution 2
It is well known that the sum of all numbers from to is . Therefore, the denominator is equal to . Now, we can cancel the factors of , , and from both the numerator and denominator, only leaving . This evaluates to .
Solution 3
First, we evaluate to get 36. We notice that is squared, so we can factor the denominator like then cancel the 6s out to get . Now that we have escaped fraction form, we multiply . Multiplying these, we get .
~megaboy6679 for minor edits
Video Solution (CREATIVE THINKING!!!)
~Education, the Study of Everything
Video Solution
~savannahsolver
Video Solution by OmegaLearn
https://youtu.be/TkZvMa30Juo?t=3529
~pi_is_3.14
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.