# 2017 AMC 8 Problems/Problem 22

## Problem

In the right triangle $ABC$, $AC=12$, $BC=5$, and angle $C$ is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle? $[asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("A", (0,0), W); label("C", (12,0), E); label("B", (12,5), NE); label("12", (6, 0), S); label("5", (12, 2.5), E);[/asy]$ $\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{13}{5}\qquad\textbf{(C) }\frac{59}{18}\qquad\textbf{(D) }\frac{10}{3}\qquad\textbf{(E) }\frac{60}{13}$

## Solution 1

We can reflect triangle $ABC$ over line $AC.$ This forms the triangle $AB'C$ and a circle out of the semicircle. $[asy] draw((0,0)--(12,0)--(12,5)--cycle); draw((0,0)--(12,0)--(12,-5)--cycle); draw(circle((8.665,0),3.3333)); label("A", (0,0), hhhhhhhhhhhhhhhhhhhhhhhh); label("C", (12,0), E); label("B", (12,5), NE); label("B'", (12,-5), NE); label("12", (7, 0), S); label("5", (12, 2.5), E); label("5", (12, -2.5), E);[/asy]$ We can see that our circle is the incircle of $ABB'.$ We can use a formula for finding the radius of the incircle. The area of a triangle $= \text{Semiperimeter} \cdot \text{inradius}$ . The area of $ABB'$ is $12\times5 = 60.$ The semiperimeter is $\dfrac{10+13+13}{2}=18.$ Simplifying $\dfrac{60}{18} = \dfrac{10}{3}.$ Our answer is therefore $\boxed{\textbf{(D)}\ \frac{10}{3}}.$

Asymptote diagram by Mathandski

## Solution 2

Let the center of the semicircle be $O$. Let the point of tangency between line $AB$ and the semicircle be $F$. Angle $BAC$ is common to triangles $ABC$ and $AFO$. By tangent properties, angle $AFO$ must be $90$ degrees. Since both triangles $ABC$ and $AFO$ are right and share an angle, $AFO$ is similar to $ABC$. The hypotenuse of $AFO$ is $12 - r$, where $r$ is the radius of the circle. (See for yourself) The short leg of $AFO$ is $r$. Because $\triangle AFO$ ~ $\triangle ABC$, we have $r/(12 - r) = 5/13$ and solving gives $r = \boxed{\textbf{(D)}\ \frac{10}{3}}.$

## Solution 3

Let the tangency point on $AB$ be $D$. Note $$AD = AB-BD = AB-BC = 8.$$ By Power of a Point, $$12(12-2r) = 8^2.$$ Solving for $r$ gives $$r = \boxed{\textbf{(D) }\frac{10}{3}}.$$

## Solution 4

Let us label the center of the semicircle $O$ and the point where the circle is tangent to the triangle $D$. The area of $\triangle ABC$ = the areas of $\triangle ABO$ + $\triangle BCO$, which means $(12 \cdot 5)/2 = (13\cdot r)/2 +(5\cdot r)/2$. So, it gives us $r = \boxed{\textbf{(D)}\ \frac{10}{3}}$.

--LarryFlora

## Solution 5 (Pythagorean Theorem)

We can draw another radius from the center to the point of tangency. This angle, $\angle{ODB}$, is $90^\circ$. Label the center $O$, the point of tangency $D$, and the radius $r$. $[asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("A", (0,0), W); label("C", (12,0), E); label("B", (12,5), NE); label("12", (6, 0), S); label("5", (12, 2.5), E); draw((8.665,0)--(7.4,3.07)); label("O", (8.665, 0), S); label("D", (7.4, 3.1), NW); label("r", (11, 0), S); label("r", (7.6, 1), W); [/asy]$

Since $ODBC$ is a kite, then $DB=CB=5$. Also, $AD=13-5=8$. By the Pythagorean Theorem, $r^2 + 8^2=(12-r)^2$. Solving, $r^2+64=144-24r+r^2 \Rightarrow 24r=80 \Rightarrow \boxed{\textbf{(D) }\frac{10}{3}}$.

~MrThinker

## Solution 6 (Basic Trigonometry)

If we reflect triangle $ABC$ over line $AC$, we will get isosceles triangle $ABD$. By the Pythagorean Theorem, we are capable of finding out that the $AB = AD = 13$. Hence, $\tan \frac{\angle BAD}{2} = \tan \angle BAC = \frac{5}{12}$. Therefore, as of triangle $ABD$, the radius of its inscribed circle $r = \frac{tan \frac{\angle BAD}{2}\cdot (AB + AD - BD)}{2} = \frac{\frac{5}{12} \cdot 16}{2} = \boxed{\textbf{(D) }\frac{10}{3}}$

## Video Solution (CREATIVE THINKING + ANALYSIS!!!)

~Education, the Study of Everything

- pi_is_3.14

## Video Solutions

- Happytwin

- savannahsolver

Vertical videos for mobile phones:

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 