Difference between revisions of "2018 AIME II Problems/Problem 12"
(→Solution 2 (Another way to get the middle point)) |
(→Solution 1) |
||
Line 20: | Line 20: | ||
This means that dropping an altitude from <math>B</math> to some foot <math>Q</math> on <math>\overline{CD}</math> gives <math>DQ = \frac{8}{5}</math> and therefore <math>CQ = \frac{42}{5}</math>. Seeing that <math>CQ = \frac{3}{5}\cdot BC</math>, we conclude that <math>\triangle QCB</math> is a 3-4-5 right triangle, so <math>BQ = \frac{56}{5}</math>. Then, the area of <math>\triangle BCD</math> is <math>\frac{1}{2}\cdot 10 \cdot \frac{56}{5} = 56</math>. Since <math>AP = CP</math>, points <math>A</math> and <math>C</math> are equidistant from <math>\overline{BD}</math>, so <math>\left[\triangle ABD\right] = \left[\triangle CBD\right] = 56</math> and hence <math>\left[ABCD\right] = 56 + 56 = \boxed{112}</math>. -kgator | This means that dropping an altitude from <math>B</math> to some foot <math>Q</math> on <math>\overline{CD}</math> gives <math>DQ = \frac{8}{5}</math> and therefore <math>CQ = \frac{42}{5}</math>. Seeing that <math>CQ = \frac{3}{5}\cdot BC</math>, we conclude that <math>\triangle QCB</math> is a 3-4-5 right triangle, so <math>BQ = \frac{56}{5}</math>. Then, the area of <math>\triangle BCD</math> is <math>\frac{1}{2}\cdot 10 \cdot \frac{56}{5} = 56</math>. Since <math>AP = CP</math>, points <math>A</math> and <math>C</math> are equidistant from <math>\overline{BD}</math>, so <math>\left[\triangle ABD\right] = \left[\triangle CBD\right] = 56</math> and hence <math>\left[ABCD\right] = 56 + 56 = \boxed{112}</math>. -kgator | ||
+ | |||
+ | |||
+ | Just to be complete -- <math>h1</math> and <math>h2</math> can actually be equal. In this case, <math>AP \neq CP</math>, but <math>BP</math> must be equal to <math>DP</math>. We get the same result. -Mathdummy. | ||
==Solution 2 (Another way to get the middle point)== | ==Solution 2 (Another way to get the middle point)== |
Revision as of 07:53, 14 January 2019
Problem
Let be a convex quadrilateral with
,
, and
. Assume that the diagonals of
intersect at point
, and that the sum of the areas of triangles
and
equals the sum of the areas of triangles
and
. Find the area of quadrilateral
.
Solution 1
For reference, , so
is the longest of the four sides of
. Let
be the length of the altitude from
to
, and let
be the length of the altitude from
to
. Then, the triangle area equation becomes
.
What an important finding! Note that the opposite sides and
have equal length, and note that diagonal
bisects diagonal
. This is very similar to what happens if
were a parallelogram with
, so let's extend
to point
, such that
is a parallelogram. In other words,
and
. Now, let's examine
. Since
, the triangle is isosceles, and
. Note that in parallelogram
,
and
are congruent, so
and thus
. Define
, so
. We use the Law of Cosines on
and
:
Subtracting the second equation from the first yields
This means that dropping an altitude from to some foot
on
gives
and therefore
. Seeing that
, we conclude that
is a 3-4-5 right triangle, so
. Then, the area of
is
. Since
, points
and
are equidistant from
, so
and hence
. -kgator
Just to be complete -- and
can actually be equal. In this case,
, but
must be equal to
. We get the same result. -Mathdummy.
Solution 2 (Another way to get the middle point)
So, let the area of triangles
,
,
,
. Suppose
and
, then it is easy to show that
. Also, because
, we will have
. So
. So
. So
. So
. As a result,
. Then, we have
. Combine the condition
, we can find out that
. So
is the middle point of
~Solution by (Frank FYC)
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.