Difference between revisions of "1983 AIME Problems/Problem 8"

(Solution 2: Clarification of Solution 1)
(Solution 2: Clarification of Solution 1)
Line 5: Line 5:
  
 
Expanding the [[combination|binomial coefficient]], we get <math>{200 \choose 100}=\frac{200!}{100!100!}</math>. Let the required prime be <math>p</math>; then <math>10 \le p < 100</math>. If <math>p > 50</math>, then the factor of <math>p</math> appears twice in the denominator. Thus, we need <math>p</math> to appear as a factor at least three times in the numerator, so <math>3p<200</math>. The largest such prime is <math>\boxed{061}</math>, which is our answer.
 
Expanding the [[combination|binomial coefficient]], we get <math>{200 \choose 100}=\frac{200!}{100!100!}</math>. Let the required prime be <math>p</math>; then <math>10 \le p < 100</math>. If <math>p > 50</math>, then the factor of <math>p</math> appears twice in the denominator. Thus, we need <math>p</math> to appear as a factor at least three times in the numerator, so <math>3p<200</math>. The largest such prime is <math>\boxed{061}</math>, which is our answer.
 +
  
 
== Solution 2: Clarification of Solution 1 ==
 
== Solution 2: Clarification of Solution 1 ==

Revision as of 11:22, 14 August 2019

Problem

What is the largest $2$-digit prime factor of the integer $n = {200\choose 100}$?

Solution

Expanding the binomial coefficient, we get ${200 \choose 100}=\frac{200!}{100!100!}$. Let the required prime be $p$; then $10 \le p < 100$. If $p > 50$, then the factor of $p$ appears twice in the denominator. Thus, we need $p$ to appear as a factor at least three times in the numerator, so $3p<200$. The largest such prime is $\boxed{061}$, which is our answer.


Solution 2: Clarification of Solution 1

We know that \[{200\choose100}=\frac{200!}{100!100!}\] Since $p<100$, there is a factor of $p$ in each of the $100!$ in the denominator. Thus there must be at least $3$ factors of $p$ in the numerator $200!$ for $p$ to be a factor of $n=\frac{200!}{100!100!}$.

So basically, $p$ is the largest prime number such that \[\lfloor\frac{200}{3}\rfloor>3\] Since $p<\frac{200}{3}\approx66.66...$, the largest prime value for $p$ is $p=61$

~ Nafer

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions