Difference between revisions of "1992 AJHSME Problems/Problem 1"

(Solution)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
<math>\dfrac{10-9+8-7+6-5+4-3+2-1}{1-2-3-4-5-6-7-8-9}=</math>
+
<math>\dfrac{10-9+8-7+6-5+4-3+2-1}{1-2+3-4+5-6+7-8+9}=</math>
  
 
<math>\text{(A)}\ -1 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 10</math>
 
<math>\text{(A)}\ -1 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 10</math>
Line 8: Line 8:
  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
\dfrac{10-9+8-7+6-5+4+3+2-1}{1-2+3-4+5-6+7-8+9} &= \dfrac{(10-9)+(8-7)+(6-5)+(4-3)+(2-1)}{1+(-2+3)+(-4+5)+(-6+7)+(-8+9)} \
+
\dfrac{10-9+8-7+6-5+4-3+2-1}{1-2+3-4+5-6+7-8+9} &= \dfrac{(10-9)+(8-7)+(6-5)+(4-3)+(2-1)}{1+(-2+3)+(-4+5)+(-6+7)+(-8+9)} \
&= \dfrac{1+1+1+1+1}{1-1+1+1+1} \
+
&= \dfrac{1+1+1+1+1}{1+1+1+1+1} \
 
&= 1 \rightarrow \boxed{\text{B}}.
 
&= 1 \rightarrow \boxed{\text{B}}.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
Line 17: Line 17:
 
{{AJHSME box|year=1992|before=First<br />Problem|num-a=2}}
 
{{AJHSME box|year=1992|before=First<br />Problem|num-a=2}}
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 15:00, 9 November 2019

Problem

$\dfrac{10-9+8-7+6-5+4-3+2-1}{1-2+3-4+5-6+7-8+9}=$

$\text{(A)}\ -1 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 10$

Solution

\begin{align*} \dfrac{10-9+8-7+6-5+4-3+2-1}{1-2+3-4+5-6+7-8+9} &= \dfrac{(10-9)+(8-7)+(6-5)+(4-3)+(2-1)}{1+(-2+3)+(-4+5)+(-6+7)+(-8+9)} \\ &= \dfrac{1+1+1+1+1}{1+1+1+1+1} \\ &= 1 \rightarrow \boxed{\text{B}}. \end{align*}

See Also

1992 AJHSME (ProblemsAnswer KeyResources)
Preceded by
First
Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png