Difference between revisions of "2005 AMC 10A Problems/Problem 25"

(Solution 4)
(Solution 4)
Line 87: Line 87:
 
D = (6*A + 19*B)/25;
 
D = (6*A + 19*B)/25;
 
E = (28*A + 14*C)/42;
 
E = (28*A + 14*C)/42;
F = (84/19*E+448/19*A)
+
F = (4.421*E+23.258*A)
  
 
draw(A--B--C--cycle);
 
draw(A--B--C--cycle);

Revision as of 21:34, 28 December 2019

Problem

In $ABC$ we have $AB = 25$, $BC = 39$, and $AC=42$. Points $D$ and $E$ are on $AB$ and $AC$ respectively, with $AD = 19$ and $AE = 14$. What is the ratio of the area of triangle $ADE$ to the area of the quadrilateral $BCED$?

$\mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1$

Solution 1(no trig)

We have that \[\frac{[ADE]}{[ABC]} = \frac{AD}{AB} \cdot \frac{AE}{AC} = \frac{19}{25} \cdot \frac{14}{42} = \frac{19}{75}.\]

[asy] unitsize(0.15 cm);  pair A, B, C, D, E;  A = (191/39,28*sqrt(1166)/39); B = (0,0); C = (39,0); D = (6*A + 19*B)/25; E = (28*A + 14*C)/42;  draw(A--B--C--cycle); draw(D--E);  label("$A$", A, N); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, W); label("$E$", E, NE); label("$19$", (A + D)/2, W); label("$6$", (B + D)/2, W); label("$14$", (A + E)/2, NE); label("$28$", (C + E)/2, NE); [/asy]

But $[BCED] = [ABC] - [ADE]$, so \begin{align*} \frac{[ADE]}{[BCED]} &= \frac{[ADE]}{[ABC] - [ADE]} \\ &= \frac{1}{[ABC]/[ADE] - 1} \\ &= \frac{1}{75/19 - 1} \\ &= \boxed{\frac{19}{56}\Longrightarrow D}. \end{align*}


Solution 2(no trig)

We can let $[ADE]=x$. Since $EC=2*EA$, $[DEC]=2x$. So, $[ADC]=3x$. This means that $[BDC]=\frac{6}{19}\cdot3x=\frac{18x}{19}$. Thus, \[\frac{[ADE]}{[BCED]} = \frac{x}{\frac{18x}{19}+2x}= \boxed{\frac{19}{56}\Longrightarrow D}.\]

-Conantwiz2023

Solution 3(trig)

The area of a triangle is $\frac{1}{2}bc\sin A$.

Using this formula:

$[ADE]=\frac{1}{2}\cdot19\cdot14\cdot\sin A = 133\sin A$

$[ABC]=\frac{1}{2}\cdot25\cdot42\cdot\sin A = 525\sin A$

Since the area of $BCED$ is equal to the area of $ABC$ minus the area of $ADE$,

$[BCED] = 525\sin A - 133\sin A = 392\sin A$.

Therefore, the desired ratio is $\frac{133\sin A}{392\sin A}=\frac{19}{56}\Longrightarrow \mathrm{(D)}$


Note: $BC=39$ was not used in this problem


Solution 4

Diagram borrowed from Solution 1.

unitsize(0.15 cm);

pair A, B, C, D, E;

A = (191/39,28*sqrt(1166)/39);
B = (0,0);
C = (39,0);
D = (6*A + 19*B)/25;
E = (28*A + 14*C)/42;
F = (4.421*E+23.258*A)

draw(A--B--C--cycle);
draw(D--E);
draw(B--F);

label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, SE);
label("$D$", D, W);
label("$E$", E, NE);
label("$19$", (A + D)/2, W);
label("$6$", (B + D)/2, W);
label("$14$", (A + E)/2, NE);
label("$28$", (C + E)/2, NE);
 (Error making remote request. Unknown error_msg)

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png