Difference between revisions of "2020 AIME I Problems/Problem 14"
Kevinmathz (talk | contribs) |
(→Solution) |
||
Line 3: | Line 3: | ||
Let <math>P(x)</math> be a quadratic polynomial with complex coefficients whose <math>x^2</math> coefficient is <math>1.</math> Suppose the equation <math>P(P(x))=0</math> has four distinct solutions, <math>x=3,4,a,b.</math> Find the sum of all possible values of <math>(a+b)^2.</math> | Let <math>P(x)</math> be a quadratic polynomial with complex coefficients whose <math>x^2</math> coefficient is <math>1.</math> Suppose the equation <math>P(P(x))=0</math> has four distinct solutions, <math>x=3,4,a,b.</math> Find the sum of all possible values of <math>(a+b)^2.</math> | ||
− | == Solution == | + | == Solution 1 == |
Either <math>P(3) = P(4)</math> or not. We first see that if <math>P(3) = P(4)</math> it's easy to obtain by Vieta's that <math>(a+b)^2 = 49</math>. Now, take <math>P(3) \neq P(4)</math> and WLOG <math>P(3) = P(a), P(4) = P(b)</math>. Now, consider the parabola formed by the graph of <math>P</math>. It has vertex <math>\frac{3+a}{2}</math>. Now, say that <math>P(x) = x^2 - (3+a)x + c</math>. We note <math>P(3)P(4) = c = P(3)(4 - 4a + \frac{8a - 1}{2}) \implies a = \frac{7P(3) + 1}{8}</math>. Now, we note <math>P(4) = \frac{7}{2}</math> by plugging in again. Now, it's easy to find that <math>a = -2.5, b = -3.5</math>, yielding a value of <math>36</math>. Finally, we add <math>49 + 36 = \boxed{085}</math>. ~awang11, charmander3333 | Either <math>P(3) = P(4)</math> or not. We first see that if <math>P(3) = P(4)</math> it's easy to obtain by Vieta's that <math>(a+b)^2 = 49</math>. Now, take <math>P(3) \neq P(4)</math> and WLOG <math>P(3) = P(a), P(4) = P(b)</math>. Now, consider the parabola formed by the graph of <math>P</math>. It has vertex <math>\frac{3+a}{2}</math>. Now, say that <math>P(x) = x^2 - (3+a)x + c</math>. We note <math>P(3)P(4) = c = P(3)(4 - 4a + \frac{8a - 1}{2}) \implies a = \frac{7P(3) + 1}{8}</math>. Now, we note <math>P(4) = \frac{7}{2}</math> by plugging in again. Now, it's easy to find that <math>a = -2.5, b = -3.5</math>, yielding a value of <math>36</math>. Finally, we add <math>49 + 36 = \boxed{085}</math>. ~awang11, charmander3333 | ||
+ | |||
+ | == Solution 2 == | ||
+ | Let the roots of <math>P(x)</math> be <math>m</math> and <math>n</math>, then we can write <math>P(x)=x^2-(m+n)x+mn</math>. The fact that <math>P(P(x))=0</math> has solutions <math>x=3,4,a,b</math> implies that some combination of <math>2</math> of these are the solution to <math>P(x)=m</math>, and the other <math>2</math> are the solution to <math>P(x)=n</math>. It's fairly easy to see there are only <math>2</math> possible such groupings: <math>P(3)=P(4)=m</math> and <math>P(a)=P(b)=n</math>, or <math>P(3)=P(a)=m</math> and <math>P(4)=P(b)=n</math> (Note that <math>a,b</math> are interchangeable, and so are <math>m</math> and <math>n</math>). We now to casework: | ||
+ | If <math>P(3)=P(4)=m</math>, then | ||
+ | <cmath>9-3(m+n)+mn=16-4(m+n)+mn=m \implies m+n=7</cmath> | ||
+ | <cmath>a^2-a(m+n)+mn=b^2-b(m+n)+mn=n \implies a+b=m+n=7</cmath> | ||
+ | so this gives <math>(a+b)^2=7^2=49</math>. | ||
+ | Next, if <math>P(3)=P(a)=m</math>, then | ||
+ | <cmath>9-3(m+n)+mn=a^2-a(m+n)+mn=m \implies a+3=m+n</cmath> | ||
+ | <cmath>16-4(m+n)+mn=b^2-b(m+n)+mn=n \implies b+4=m+n</cmath> | ||
+ | Subtracting the first part of the first equation from the first part of the second equation gives | ||
+ | <cmath>7-(m+n)=n-m \implies 2n=7 \implies n=\frac{7}{2} \implies m=-3</cmath> | ||
+ | Hence, <math>a+b=2(m+n)-7=2\cdot \frac{1}{2}-7=-6</math>, and so <math>(a+b)^2=(-6)^2=36</math>. | ||
+ | Therefore, the solution is <math>49+36=\boxed{085}</math> ~ktong | ||
==See Also== | ==See Also== |
Revision as of 23:51, 12 March 2020
Contents
[hide]Problem
Let be a quadratic polynomial with complex coefficients whose coefficient is Suppose the equation has four distinct solutions, Find the sum of all possible values of
Solution 1
Either or not. We first see that if it's easy to obtain by Vieta's that . Now, take and WLOG . Now, consider the parabola formed by the graph of . It has vertex . Now, say that . We note . Now, we note by plugging in again. Now, it's easy to find that , yielding a value of . Finally, we add . ~awang11, charmander3333
Solution 2
Let the roots of be and , then we can write . The fact that has solutions implies that some combination of of these are the solution to , and the other are the solution to . It's fairly easy to see there are only possible such groupings: and , or and (Note that are interchangeable, and so are and ). We now to casework: If , then so this gives . Next, if , then Subtracting the first part of the first equation from the first part of the second equation gives Hence, , and so . Therefore, the solution is ~ktong
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.