Difference between revisions of "2001 AMC 12 Problems/Problem 7"
Joseph2718 (talk | contribs) (→Solution 2) |
Joseph2718 (talk | contribs) (→Solution 2) |
||
Line 43: | Line 43: | ||
A must be a positive integer. So, we seek a factor of 4002 to set equal to <math>A+140</math> so that we get an integer solution for A that is less than 140. By guess-and-check OR inspection, the appropriate factor is <math>174</math> (<math>2\times3\times29</math>), meaning that A has a value of <math>34</math>. Plug this into the above equation for x to get <cmath>x = 23</cmath>. | A must be a positive integer. So, we seek a factor of 4002 to set equal to <math>A+140</math> so that we get an integer solution for A that is less than 140. By guess-and-check OR inspection, the appropriate factor is <math>174</math> (<math>2\times3\times29</math>), meaning that A has a value of <math>34</math>. Plug this into the above equation for x to get <cmath>x = 23</cmath>. | ||
− | Therefore, the price of full tickets out of <math>2001</math> is <math>23\times34=\boxed{782}\ | + | Therefore, the price of full tickets out of <math>2001</math> is <math>23\times34=\boxed{782}\, or answer choice \boxed{A}</math>. |
== See Also == | == See Also == |
Revision as of 20:43, 25 April 2020
- The following problem is from both the 2001 AMC 12 #7 and 2001 AMC 10 #14, so both problems redirect to this page.
Contents
[hide]Problem
A charity sells benefit tickets for a total of . Some tickets sell for full price (a whole dollar amount), and the rest sells for half price. How much money is raised by the full-price tickets?
Solution
Solution 1
Let's multiply ticket costs by , then the half price becomes an integer, and the charity sold tickets worth a total of dollars.
Let be the number of half price tickets, we then have full price tickets. The cost of full price tickets is equal to the cost of half price tickets.
Hence we know that half price tickets cost dollars. Then a single half price ticket costs dollars, and this must be an integer. Thus must be a divisor of . Keeping in mind that , we are looking for a divisor between and , inclusive.
The prime factorization of is . We can easily find out that the only divisor of within the given range is .
This gives us , hence there were half price tickets and full price tickets.
In our modified setting (with prices multiplied by ) the price of a half price ticket is . In the original setting this is the price of a full price ticket. Hence dollars are raised by the full price tickets.
Solution 2
Let the cost of the full price ticket be , the number of full-price tickets be , and the number of half-price tickets be
Let's multiply both sides of the equation that naturally follows by 2. We have
And we have
Plugging in, we get
Simplifying, we get
Factoring out the , we get
We see that the fraction has to simplify to an integer (the full price is a whole dollar amount)
Thus, must be a factor of 4002.
Consider the prime factorization of :
A must be a positive integer. So, we seek a factor of 4002 to set equal to so that we get an integer solution for A that is less than 140. By guess-and-check OR inspection, the appropriate factor is (), meaning that A has a value of . Plug this into the above equation for x to get .
Therefore, the price of full tickets out of is .
See Also
2001 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2001 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.