Difference between revisions of "2017 AMC 8 Problems/Problem 1"

(Solution 2)
(Solution 1)
Line 5: Line 5:
 
<math>\textbf{(A) }2+0+1+7\qquad\textbf{(B) }2 \times 0 +1+7\qquad\textbf{(C) }2+0 \times 1 + 7\qquad\textbf{(D) }2+0+1 \times 7\qquad\textbf{(E) }2 \times 0 \times 1 \times 7</math>
 
<math>\textbf{(A) }2+0+1+7\qquad\textbf{(B) }2 \times 0 +1+7\qquad\textbf{(C) }2+0 \times 1 + 7\qquad\textbf{(D) }2+0+1 \times 7\qquad\textbf{(E) }2 \times 0 \times 1 \times 7</math>
  
==Solution 1==
+
We will compute each expression. A) <math>2+0+1+7=10</math>. B) <math>2 \times 0+1+7=8</math> C) <math>2+0\times 1+7=9</math> D) <math>2+0+1\times 7=9</math>. E)<math>2\times 0\times 1 \times 7 =0</math> Ordering these we get <math>10,8,9,9,0</math> Out of these <math>10</math> is the largest number. Option <math>(A)</math> adds up to ten. Therefore, the answer is <math>\boxed{(A2+0+1+7}</math>
We will compute each expression. A) <math>2+0+1+7=10</math>. B) <math>2 \times 0+1+7=8</math> C) <math>2+0\times 1+7=9</math> D) <math>2+0+1\times 7=9</math>. E)<math>2\times 0\times 1 \times 7 =0</math> Ordering these we get <math>10,8,9,9,0</math> Out of these <math>10</math> is the largest number. Option <math>(A)</math> adds up to ten. Therefore, the answer is <math>\boxed{([b]A[\b] 2+0+1+7}</math>
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 21:48, 14 June 2020

Problem 1

Which of the following values is largest?

$\textbf{(A) }2+0+1+7\qquad\textbf{(B) }2 \times 0 +1+7\qquad\textbf{(C) }2+0 \times 1 + 7\qquad\textbf{(D) }2+0+1 \times 7\qquad\textbf{(E) }2 \times 0 \times 1 \times 7$

We will compute each expression. A) $2+0+1+7=10$. B) $2 \times 0+1+7=8$ C) $2+0\times 1+7=9$ D) $2+0+1\times 7=9$. E)$2\times 0\times 1 \times 7 =0$ Ordering these we get $10,8,9,9,0$ Out of these $10$ is the largest number. Option $(A)$ adds up to ten. Therefore, the answer is $\boxed{(A)  2+0+1+7}$

Solution 2

We immediately see that every one of the choices, except for A and D, has a number multiplied by $0$. This will only make the expression's value smaller. We are left with A and D, but in D, $1$ is multiplied by $7$ to get $7$, whereas in answer choice A, we get $8$ out of $7$ and $1$, instead of $7$. Therefore, $\boxed{(A) 2+0+1+7}$ is your answer.

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png