Difference between revisions of "2017 AIME I Problems/Problem 2"
Line 11: | Line 11: | ||
==Video Solution== | ==Video Solution== | ||
− | https://youtu.be/BiiKzctXDJg ~Shreyas | + | https://youtu.be/BiiKzctXDJg ~Shreyas S |
==See Also== | ==See Also== | ||
{{AIME box|year=2017|n=I|num-b=1|num-a=3}} | {{AIME box|year=2017|n=I|num-b=1|num-a=3}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:00, 17 June 2020
Contents
[hide]Problem 2
When each of , , and is divided by the positive integer , the remainder is always the positive integer . When each of , , and is divided by the positive integer , the remainder is always the positive integer . Find .
Solution
Let's work on both parts of the problem separately. First, We take the difference of and , and also of and . We find that they are and , respectively. Since the greatest common divisor of the two differences is (and the only one besides one), it's safe to assume that .
Then, we divide by , and it's easy to see that . Dividing and by also yields remainders of , which means our work up to here is correct.
Doing the same thing with , , and , the differences between and and are and , respectively. Since the only common divisor (besides , of course) is , . Dividing all numbers by yields a remainder of for each, so . Thus, .
Video Solution
https://youtu.be/BiiKzctXDJg ~Shreyas S
See Also
2017 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.