Difference between revisions of "2019 AIME II Problems/Problem 9"
(grammar fixes and rewordings) |
(→Solution 2) |
||
Line 23: | Line 23: | ||
Thus, <math>\frac{S}{20}=\frac{2000+80(3+7+11+...+23)}{20}=100+4(3+7+11+...+23)=\boxed{472}</math>. | Thus, <math>\frac{S}{20}=\frac{2000+80(3+7+11+...+23)}{20}=100+4(3+7+11+...+23)=\boxed{472}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | The divisors of <math>20</math> are <math>{1,2,4,5,10,20}</math>. <math>v_n(2)</math> must be <math>\ge 2</math> because <math>20=2^2 \times 5</math>. This means that <math>v_n(2)</math> can be exactly <math>3</math> or <math>4</math>. | ||
+ | |||
+ | 1. <math>v_n(2) = 3</math>. Then <math>\frac{20}{4}=5=5\times 1</math>. The smallest is <math>2^3*5^4</math> which is <math>> 2019</math>. Hence there are no solution in this case | ||
+ | 2. <math>v_n(2)=4</math>. Then <math>\frac{20}{5}=4 = 4\times 1 = 2\times 2</math>. | ||
+ | The <math>4\times 1</math> case gives one solution, <math>2^4 \times 5^3 = 2000</math>. | ||
+ | The <math>2\times 2</math> case gives <math>2^4\times 5 \times (3+7+11+13+17+19+23)</math>. Any prime greater than <math>23</math> will exceed <math>2019</math> | ||
+ | |||
+ | The answer is <math>\frac{1}{20}(2000+80(3+7+..+23)) = 472</math>. | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=II|num-b=8|num-a=10}} | {{AIME box|year=2019|n=II|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:59, 22 July 2020
Problem 9
Call a positive integer -pretty if has exactly positive divisors and is divisible by . For example, is -pretty. Let be the sum of positive integers less than that are -pretty. Find .
Solution
Every 20-pretty integer can be written in form , where , , , and , where is the number of divisors of . Thus, we have , using the fact that the divisor function is multiplicative. As must be a divisor of 20, there are not many cases to check.
If , then . But this leads to no solutions, as gives .
If , then or . The first case gives where is a prime other than 2 or 5. Thus we have . The sum of all such is . In the second case and , and there is one solution .
If , then , but this gives . No other values for work.
Then we have .
-scrabbler94
Solution 2
For to have exactly positive divisors, can only take on certain prime factorization forms: namely, . No number that is a multiple of can be expressed in the first form, and the only integer divisible by that has the second form is , which is greater than .
For the third form, the only -pretty numbers are and , and only is small enough.
For the fourth form, any number of the form where is a prime other than or will satisfy the -pretty requirement. Since , . Therefore, can take on or .
Thus, .
Solution 3
The divisors of are . must be because . This means that can be exactly or .
1. . Then . The smallest is which is . Hence there are no solution in this case 2. . Then . The case gives one solution, . The case gives . Any prime greater than will exceed
The answer is .
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.