Difference between revisions of "2019 AIME II Problems/Problem 11"
Jerry122805 (talk | contribs) (→Solution 3 (Video)) |
Jerry122805 (talk | contribs) (→Solution 3 (Death By Trig Bash)) |
||
Line 43: | Line 43: | ||
== Solution 3 (Death By Trig Bash) == | == Solution 3 (Death By Trig Bash) == | ||
− | 14. Let the centers of the circles be <math>O_{1}</math> and <math>O_{2}</math> where the <math>O_{1}</math> has the side length <math>7</math> contained in the circle. Now let <math>\angle BAC =x.</math> This implies <math>\angle AO_{1}B = \angle AO_{2}C = 2x</math> by the angle by by tangent. Then we also know that <math>\angle O_{1}AB = \angle O_{1}BA = \angle O_{2}AC = \angle O_{2}CA = 90^{\circ}-x.</math> Now we first find <math>\cos x.</math> We use law of cosines on <math>\bigtriangleup ABC</math> to obtain <math>64 = 81 + 48 - 2 \cdot 9 \cdot 7 \cdot \cos{x} \implies \cos{x} = | + | 14. Let the centers of the circles be <math>O_{1}</math> and <math>O_{2}</math> where the <math>O_{1}</math> has the side length <math>7</math> contained in the circle. Now let <math>\angle BAC =x.</math> This implies <math>\angle AO_{1}B = \angle AO_{2}C = 2x</math> by the angle by by tangent. Then we also know that <math>\angle O_{1}AB = \angle O_{1}BA = \angle O_{2}AC = \angle O_{2}CA = 90^{\circ}-x.</math> Now we first find <math>\cos x.</math> We use law of cosines on <math>\bigtriangleup ABC</math> to obtain <math>64 = 81 + 48 - 2 \cdot 9 \cdot 7 \cdot \cos{x} \implies \cos{x} =\frac{11}{21} \implies \sin{x} =\frac{8\sqrt{5}}{21}.</math> Then applying law of sines on <math>\bigtriangleup AO_{1}B</math> we obtain <math>\frac{7}{\sin{2x}} =\frac{OB_{1}}{\sin{90^{\circ}-x}} \implies\frac{7}{2\sin{x}\cos{x}} =\frac{OB_{1}}{\cos{x}} \implies OB_{1} = O_{1}A=\frac{147}{16\sqrt{5}}.</math> Using similar logic we obtain <math>OA_{1} =\frac{189}{16\sqrt{5}}.</math> Now we know that <math>\angle O_{1}AO_{2}=180^{\circ}-x.</math> Thus using law of cosines on <math>\bigtriangleup O_{1}AO_{2}</math> yields <math>O_{1}O_{2} =\sqrt{\left(\frac{147}{16\sqrt{5}}\right)^2+\left(\frac{189}{16\sqrt{5}}\right)^2-2\:\cdot \left(\frac{147}{16\sqrt{5}}\right)\cdot \frac{189}{16\sqrt{5}}\cdot -\frac{11}{21}}.</math> While this does look daunting we can write the above expression as <math>\sqrt{\left(\frac{189+147}{16\sqrt{5}}\right)^2 - 2\cdot \left(\frac{147}{16\sqrt{5}}\right)\cdot \frac{189}{16\sqrt{5}}\cdot \frac{10}{21}} =\sqrt{\left(\frac{168}{8\sqrt{5}}\right)^2 - \left(\frac{7 \cdot 189 \cdot 5}{8 \sqrt{5} \cdot 8\sqrt{5}}\right)}.</math> Then factoring yields <math>\sqrt{\frac{21^2(8^2-15)}{(8\sqrt{5})^2}} =\frac{147}{8\sqrt{5}}.</math> The area <math>[O_{1}AO_{2}] =\frac{1}{2} \cdot\frac{147}{16\sqrt{5}} \cdot\frac{189}{16\sqrt{5}} \cdot \sin(180^{\circ}-x) =\frac{1}{2} \cdot\frac{147}{16\sqrt{5}} \cdot\frac{189}{16\sqrt{5}} \cdot\frac{8\sqrt{5}}{21}.</math> Now <math>AK</math> is twice the length of the altitude of <math>\bigtriangleup O_{1}AO_{2}</math> so we let the altitude be <math>h</math> and we have <math>\displaystyle\frac{1}{2} \cdot h \cdot\frac{147\sqrt{5}}{8\sqrt{5}} =\frac{1}{2} \cdot\frac{147}{16\sqrt{5}} \cdot\frac{189}{16\sqrt{5}} \cdot\frac{8\sqrt{5}}{21} \implies h =\frac{9}{4}.</math> Thus our desired length is <math>\frac{9}{2} \implies n+n = \boxed{11}.</math> |
==Solution 4 (Video)== | ==Solution 4 (Video)== |
Revision as of 19:27, 8 August 2020
Contents
[hide]Problem
Triangle has side lengths
and
Circle
passes through
and is tangent to line
at
Circle
passes through
and is tangent to line
at
Let
be the intersection of circles
and
not equal to
Then
where
and
are relatively prime positive integers. Find
Solution 1
-Diagram by Brendanb4321
Note that from the tangency condition that the supplement of with respects to lines
and
are equal to
and
, respectively, so from tangent-chord,
Also note that
, so
. Using similarity ratios, we can easily find
However, since
and
, we can use similarity ratios to get
Now we use Law of Cosines on
: From reverse Law of Cosines,
. This gives us
so our answer is
.
-franchester
Solution 2 (Inversion)
Consider an inversion with center and radius
. Then, we have
, or
. Similarly,
. Notice that
is a parallelogram, since
and
are tangent to
and
, respectively. Thus,
. Now, we get that
so by Law of Cosines on
we have
Then, our answer is
.
-brianzjk
Solution 3 (Death By Trig Bash)
14. Let the centers of the circles be and
where the
has the side length
contained in the circle. Now let
This implies
by the angle by by tangent. Then we also know that
Now we first find
We use law of cosines on
to obtain
Then applying law of sines on
we obtain
Using similar logic we obtain
Now we know that
Thus using law of cosines on
yields
While this does look daunting we can write the above expression as
Then factoring yields
The area
Now
is twice the length of the altitude of
so we let the altitude be
and we have
Thus our desired length is
Solution 4 (Video)
Video Link: https://www.youtube.com/watch?v=nJydO5CLuuI
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.