Difference between revisions of "2013 AMC 12B Problems/Problem 1"
BeastX-Men (talk | contribs) m (→See also: Rearranged order for consistency) |
|||
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
Let <math>L</math> be the low temperature. The high temperature is <math>L+16</math>. The average is <math>\frac{L+(L+16)}{2}=3</math>. Solving for <math>L</math>, we get <math>L=\boxed{\textbf{(C)} \ -5}</math> | Let <math>L</math> be the low temperature. The high temperature is <math>L+16</math>. The average is <math>\frac{L+(L+16)}{2}=3</math>. Solving for <math>L</math>, we get <math>L=\boxed{\textbf{(C)} \ -5}</math> | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/OsnepwGjcw8 | ||
+ | |||
+ | ~savannahsolver | ||
== See also == | == See also == |
Revision as of 21:10, 21 September 2020
- The following problem is from both the 2013 AMC 12B #1 and 2013 AMC 10B #3, so both problems redirect to this page.
Contents
[hide]Problem
On a particular January day, the high temperature in Lincoln, Nebraska, was degrees higher than the low temperature, and the average of the high and low temperatures was . In degrees, what was the low temperature in Lincoln that day?
Solution
Let be the low temperature. The high temperature is . The average is . Solving for , we get
Video Solution
~savannahsolver
See also
2013 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by First Question |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.