Difference between revisions of "2005 AMC 10A Problems/Problem 25"
(→Solution 4) |
m (→Solution 2(no trig)) |
||
Line 44: | Line 44: | ||
==Solution 2(no trig)== | ==Solution 2(no trig)== | ||
+ | |||
+ | <asy> | ||
+ | unitsize(0.15 cm); | ||
+ | |||
+ | pair A, B, C, D, E; | ||
+ | |||
+ | A = (191/39,28*sqrt(1166)/39); | ||
+ | B = (0,0); | ||
+ | C = (39,0); | ||
+ | D = (6*A + 19*B)/25; | ||
+ | E = (28*A + 14*C)/42; | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(D--E); | ||
+ | |||
+ | label("$A$", A, N); | ||
+ | label("$B$", B, SW); | ||
+ | label("$C$", C, SE); | ||
+ | label("$D$", D, W); | ||
+ | label("$E$", E, NE); | ||
+ | label("$19$", (A + D)/2, W); | ||
+ | label("$6$", (B + D)/2, W); | ||
+ | label("$14$", (A + E)/2, NE); | ||
+ | label("$28$", (C + E)/2, NE); | ||
+ | </asy> | ||
+ | |||
We can let <math>[ADE]=x</math>. | We can let <math>[ADE]=x</math>. |
Revision as of 12:12, 22 October 2020
Contents
[hide]Problem
In we have , , and . Points and are on and respectively, with and . What is the ratio of the area of triangle to the area of the quadrilateral ?
Solution 1
We have that
But , so
Solution 2(no trig)
We can let .
Since , .
So, .
This means that .
Thus,
-Conantwiz2023
Solution 3(trig)
Using this formula:
Since the area of is equal to the area of minus the area of ,
.
Therefore, the desired ratio is
Note: was not used in this problem
Solution 4
Let be on such that then we have Since we have Thus and Finally, after some calculations.
~ Nafer
~ LaTeX changes by tkfun
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
https://ivyleaguecenter.files.wordpress.com/2017/11/amc-10-picture.jpg (Error making remote request. Unknown error_msg)