Difference between revisions of "2009 AMC 10B Problems/Problem 14"
Whitelisted (talk | contribs) m (→Video Solution) |
Whitelisted (talk | contribs) (→See also) |
||
Line 24: | Line 24: | ||
~savannahsolver | ~savannahsolver | ||
− | == | + | == 69 == |
{{AMC10 box|year=2009|ab=B|num-b=13|num-a=15}} | {{AMC10 box|year=2009|ab=B|num-b=13|num-a=15}} | ||
{{AMC12 box|year=2009|ab=B|num-b=10|num-a=12}} | {{AMC12 box|year=2009|ab=B|num-b=10|num-a=12}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 08:58, 20 May 2021
- The following problem is from both the 2009 AMC 10B #14 and 2009 AMC 12B #11, so both problems redirect to this page.
Contents
[hide]Problem
On Monday, Millie puts a quart of seeds, of which are millet, into a bird feeder. On each successive day she adds another quart of the same mix of seeds without removing any seeds that are left. Each day the birds eat only of the millet in the feeder, but they eat all of the other seeds. On which day, just after Millie has placed the seeds, will the birds find that more than half the seeds in the feeder are millet?
Solution
On Monday, day 1, the birds find quart of millet in the feeder. On Tuesday they find quarts of millet. On Wednesday, day 3, they find quarts of millet. The number of quarts of millet they find on day is The birds always find quart of other seeds, so more than half the seeds are millet if , that is, when . Because and , this will first occur on day which is . The answer is .
Video Solution
https://www.youtube.com/watch?v=dQw4w9WgXcQ
~savannahsolver
69
2009 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2009 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.