Difference between revisions of "1983 AHSME Problems/Problem 18"

(solution 2)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Problem:
+
==Problem==
 +
 
 
Let <math>f</math> be a polynomial function such that, for all real <math>x</math>,
 
Let <math>f</math> be a polynomial function such that, for all real <math>x</math>,
<cmath>f(x^2 + 1) = x^4 + 5x^2 + 3.</cmath>
+
<math>f(x^2 + 1) = x^4 + 5x^2 + 3</math>.
For all real <math>x</math>, <math>f(x^2 - 1)</math> is
+
For all real <math>x, f(x^2-1)</math> is
 +
 
 +
<math>\textbf{(A)}\ x^4+5x^2+1\qquad
 +
\textbf{(B)}\ x^4+x^2-3\qquad
 +
\textbf{(C)}\ x^4-5x^2+1\qquad
 +
\textbf{(D)}\ x^4+x^2+3\qquad
 +
\textbf{(E)}\ \text{none of these}  </math>
 +
 
 +
==Solution==
  
Solution:
+
Let <math>y = x^2 + 1</math>. Then <math>x^2 = y - 1</math>, so we can write the given equation as  
(A) <math>x^4 + 5x^2 + 1</math> (B) <math>x^4 + x^2 - 3</math> (C) <math>x^4 - 5x^2 + 1</math> (D) <math>x^4 + x^2 + 3</math> (E) none of these
+
<cmath>\begin{align*}f(y) &= x^4 + 5x^2 + 3 \
Let <math>y = x^2 + 1</math>. Then <math>x^2 = y - 1</math>, so we can write the given equation as
 
<math>\begin{align*}
 
f(y) &= x^4 + 5x^2 + 3 \
 
 
&= (x^2)^2 + 5x^2 + 3 \
 
&= (x^2)^2 + 5x^2 + 3 \
 
&= (y - 1)^2 + 5(y - 1) + 3 \
 
&= (y - 1)^2 + 5(y - 1) + 3 \
 
&= y^2 - 2y + 1 + 5y - 5 + 3 \
 
&= y^2 - 2y + 1 + 5y - 5 + 3 \
&= y^2 + 3y - 1.
+
&= y^2 + 3y - 1.\end{align*}</cmath>
\end{align*}</math>
+
Then substituting <math>x^2 - 1</math> for <math>y</math>, we get
Then substituting <math>x^2 - 1</math>, we get
+
<cmath>\begin{align*}f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \
\begin{align*}
 
f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \
 
 
&= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \
 
&= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \
&= \boxed{x^4 + x^2 - 3}.
+
&= x^4 + x^2 - 3.\end{align*}</cmath>
\end{align*}
+
The answer is therefore <math>\boxed{\textbf{(B)}}</math>.
The answer is (B).
+
 
 +
==Solution 2==
 +
 
 +
Let <math>y=x^2.</math> We have that
 +
 
 +
<cmath>\begin{align*}f(x^2 + 1) &= x^4 + 5x^2 + 3 \
 +
&= y^2 + 5y + 3 \
 +
&= y^2 + 5y + 4 - 1 \
 +
&= (y+1)(y+4) -1 \
 +
&= (x^2 + 1)(x^2 + 4) - 1\end{align*}</cmath>
 +
 
 +
Thus, we have <math>f(n) = n(n+3)-1.</math>
 +
 
 +
If we plug in <math>n = x^2-1</math> we have
 +
 
 +
<cmath>\begin{align*}f(x^2 - 1) &= (x^2 -1)(x^2 + 2)-1 \
 +
&= (x^4 + x^2 - 2) - 1 \
 +
&= \boxed{x^4 + x^2 -3} \end{align*}</cmath>
 +
 
 +
==See Also==
 +
{{AHSME box|year=1983|num-b=17|num-a=19}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 22:57, 22 September 2021

Problem

Let $f$ be a polynomial function such that, for all real $x$, $f(x^2 + 1) = x^4 + 5x^2 + 3$. For all real $x, f(x^2-1)$ is

$\textbf{(A)}\ x^4+5x^2+1\qquad \textbf{(B)}\ x^4+x^2-3\qquad \textbf{(C)}\ x^4-5x^2+1\qquad \textbf{(D)}\ x^4+x^2+3\qquad \textbf{(E)}\ \text{none of these}$

Solution

Let $y = x^2 + 1$. Then $x^2 = y - 1$, so we can write the given equation as \begin{align*}f(y) &= x^4 + 5x^2 + 3 \\ &= (x^2)^2 + 5x^2 + 3 \\ &= (y - 1)^2 + 5(y - 1) + 3 \\ &= y^2 - 2y + 1 + 5y - 5 + 3 \\ &= y^2 + 3y - 1.\end{align*} Then substituting $x^2 - 1$ for $y$, we get \begin{align*}f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \\ &= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \\ &= x^4 + x^2 - 3.\end{align*} The answer is therefore $\boxed{\textbf{(B)}}$.

Solution 2

Let $y=x^2.$ We have that

\begin{align*}f(x^2 + 1) &= x^4 + 5x^2 + 3 \\ &= y^2 + 5y + 3 \\ &= y^2 + 5y + 4 - 1 \\ &= (y+1)(y+4) -1 \\ &= (x^2 + 1)(x^2 + 4) - 1\end{align*}

Thus, we have $f(n) = n(n+3)-1.$

If we plug in $n = x^2-1$ we have

\begin{align*}f(x^2 - 1) &= (x^2 -1)(x^2 + 2)-1 \\ &= (x^4 + x^2 - 2) - 1 \\ &= \boxed{x^4 + x^2 -3} \end{align*}

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png