Difference between revisions of "2019 AIME II Problems/Problem 7"
MRENTHUSIASM (talk | contribs) (Added in diagram.) |
MRENTHUSIASM (talk | contribs) (→Diagram: Converted diagram to asy.) |
||
Line 3: | Line 3: | ||
==Diagram== | ==Diagram== | ||
− | [ | + | <asy> |
+ | /* Made by MRENTHUSIASM */ | ||
+ | size(350); | ||
+ | |||
+ | pair A, B, C, D, E, F, G, H, I, J, K, L; | ||
+ | B = origin; | ||
+ | C = (220,0); | ||
+ | A = intersectionpoints(Circle(B,120),Circle(C,180))[0]; | ||
+ | D = A+1/4*(B-A); | ||
+ | E = A+1/4*(C-A); | ||
+ | F = B+1/4*(A-B); | ||
+ | G = B+1/4*(C-B); | ||
+ | H = C+1/8*(A-C); | ||
+ | I = C+1/8*(B-C); | ||
+ | J = extension(D,E,F,G); | ||
+ | K = extension(F,G,H,I); | ||
+ | L = extension(H,I,D,E); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(J+9/8*(K-J)--K+9/8*(J-K),dashed); | ||
+ | draw(L+9/8*(K-L)--K+9/8*(L-K),dashed); | ||
+ | draw(J+9/8*(L-J)--L+9/8*(J-L),dashed); | ||
+ | draw(D--E^^F--G^^H--I,red); | ||
+ | dot("$B$",B,1.5SW,linewidth(4)); | ||
+ | dot("$C$",C,1.5SE,linewidth(4)); | ||
+ | dot("$A$",A,1.5N,linewidth(4)); | ||
+ | dot(D,linewidth(4)); | ||
+ | dot(E,linewidth(4)); | ||
+ | dot(F,linewidth(4)); | ||
+ | dot(G,linewidth(4)); | ||
+ | dot(H,linewidth(4)); | ||
+ | dot(I,linewidth(4)); | ||
+ | dot(J,linewidth(4)); | ||
+ | dot(K,linewidth(4)); | ||
+ | dot(L,linewidth(4)); | ||
+ | label("$55$",midpoint(D--E),S,red); | ||
+ | label("$45$",midpoint(F--G),dir(55),red); | ||
+ | label("$15$",midpoint(H--I),dir(160),red); | ||
+ | label("$\ell_A$",J+9/8*(L-J),1.5*dir(B--C)); | ||
+ | label("$\ell_B$",K+9/8*(J-K),1.5*dir(C--A)); | ||
+ | label("$\ell_C$",L+9/8*(K-L),1.5*dir(A--B)); | ||
+ | </asy> | ||
~MRENTHUSIASM (by Geometry Expressions) | ~MRENTHUSIASM (by Geometry Expressions) | ||
Revision as of 09:11, 1 October 2021
Contents
Problem
Triangle has side lengths , and . Lines , and are drawn parallel to , and , respectively, such that the intersections of , and with the interior of are segments of lengths , and , respectively. Find the perimeter of the triangle whose sides lie on lines , and .
Diagram
~MRENTHUSIASM (by Geometry Expressions)
Solution 1
Let the points of intersection of with divide the sides into consecutive segments . Furthermore, let the desired triangle be , with closest to side , closest to side , and closest to side . Hence, the desired perimeter is since , , and .
Note that , so using similar triangle ratios, we find that , , , and .
We also notice that and . Using similar triangles, we get that Hence, the desired perimeter is -ktong
Solution 2
Let the diagram be set up like that in Solution 1.
By similar triangles we have Thus
Since and , the altitude of from is half the altitude of from , say . Also since , the distance from to is . Therefore the altitude of from is .
By triangle scaling, the perimeter of is of that of , or
~ Nafer
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.