Difference between revisions of "2021 Fall AMC 12B Problems/Problem 12"

(Solution 1)
(Solution 1)
Line 9: Line 9:
 
The prime factorization of <math>768</math> is <math>2^8*3</math> and the prime factorization of <math>384</math> is <math>2^7*3</math> so
 
The prime factorization of <math>768</math> is <math>2^8*3</math> and the prime factorization of <math>384</math> is <math>2^7*3</math> so
 
<cmath>f(768)=(1+\frac{1}{2}+\ldots+\frac{1}{256})(1+\frac{1}{3})=\frac{511}{192}</cmath>
 
<cmath>f(768)=(1+\frac{1}{2}+\ldots+\frac{1}{256})(1+\frac{1}{3})=\frac{511}{192}</cmath>
<cmath>f(768)=(1+\frac{1}{2}+\ldots+\frac{1}{128})(1+\frac{1}{3})=\frac{510}{192}</cmath>
+
<cmath>f(384)=(1+\frac{1}{2}+\ldots+\frac{1}{128})(1+\frac{1}{3})=\frac{510}{192}</cmath>
 
so the difference is <math>\boxed{(B) \frac{1}{192}}</math>
 
so the difference is <math>\boxed{(B) \frac{1}{192}}</math>
 
~lopkiloinm
 
~lopkiloinm

Revision as of 00:51, 24 November 2021

Problem 12

Let $c = \frac{2\pi}{11}.$ What is the value of \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?\] $\textbf{(A)}\ -1 \qquad\textbf{(B)}\ \frac{\sqrt{-11}}{5} \qquad\textbf{(C)}\ \frac{\sqrt{11}}{5} \qquad\textbf{(D)}\ \frac{10}{11} \qquad\textbf{(E)}\ 1$

Solution 1

The prime factorization of $768$ is $2^8*3$ and the prime factorization of $384$ is $2^7*3$ so \[f(768)=(1+\frac{1}{2}+\ldots+\frac{1}{256})(1+\frac{1}{3})=\frac{511}{192}\] \[f(384)=(1+\frac{1}{2}+\ldots+\frac{1}{128})(1+\frac{1}{3})=\frac{510}{192}\] so the difference is $\boxed{(B) \frac{1}{192}}$ ~lopkiloinm

See Also

2021 Fall AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png