Difference between revisions of "2021 Fall AMC 12B Problems/Problem 8"

Line 20: Line 20:
 
~Wilhelm Z
 
~Wilhelm Z
  
{{AMC12 box|year=2021 Fall|ab=A|num-a=18|num-b=16}}
+
{{AMC12 box|year=2021 Fall|ab=B|num-a=9|num-b=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:18, 24 November 2021

Problem

The product of the lengths of the two congruent sides of an obtuse isosceles triangle is equal to the product of the base and twice the triangle's height to the base. What is the measure, in degrees, of the vertex angle of this triangle?

$\textbf{(A)} \: 105 \qquad\textbf{(B)} \: 120 \qquad\textbf{(C)} \: 135 \qquad\textbf{(D)} \: 150 \qquad\textbf{(E)} \: 165$

Solution 1 (Area)

Let the lengths of the two congruent sides of the triangle be $x$, then the product desired is $x^2$.

Notice that the product of the base and twice the height is $4$ times the area of the triangle.

Set the vertex angle to be $a$, we derive the equation:

$x^2=4(\frac{1}{2}x^2\sin(a))$

$\sin(a)=\frac{1}{2}$

As the triangle is obtuse, $a=150^\circ$ only. We get $\boxed{\textbf{(D)} \ 150}.$

~Wilhelm Z

2021 Fall AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png