Difference between revisions of "2005 AMC 10A Problems/Problem 13"

(Problem)
(Problem)
Line 2: Line 2:
 
How many positive integers <math>n</math> satisfy the following condition:
 
How many positive integers <math>n</math> satisfy the following condition:
  
<math> (130n)^{50} > n^{100} > 2^{200} </math>?
+
<math> (130n)^{50} > n^{100} > 2^{200}\ ?</math>
  
 
<math> \textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125 </math>
 
<math> \textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125 </math>

Revision as of 11:44, 13 December 2021

Problem

How many positive integers $n$ satisfy the following condition:

$(130n)^{50} > n^{100} > 2^{200}\ ?$

$\textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125$

Solution

We're given $(130n)^{50} > n^{100} > 2^{200}$, so

$\sqrt[50]{(130n)^{50}} > \sqrt[50]{n^{100}} > \sqrt[50]{2^{200}}$ (because all terms are positive) and thus

$130n > n^2 > 2^4$

$130n > n^2 > 16$

Solving each part separately:

$n^2 > 16 \Longrightarrow n > 4$

$130n > n^2 \Longrightarrow 130 > n$

So $4 < n < 130$.

Therefore the answer is the number of positive integers over the interval $(4,130)$ which is $125 \Longrightarrow \mathrm{(E)}$.

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png