Difference between revisions of "2022 AIME II Problems/Problem 11"
(→Solution) |
|||
Line 2: | Line 2: | ||
Let <math>ABCD</math> be a convex quadrilateral with <math>AB=2</math>, <math>AD=7</math>, and <math>CD=3</math> such that the bisectors of acute angles <math>\angle{DAB}</math> and <math>\angle{ADC}</math> intersect at the midpoint of <math>\overline{BC}</math>. Find the square of the area of <math>ABCD</math>. | Let <math>ABCD</math> be a convex quadrilateral with <math>AB=2</math>, <math>AD=7</math>, and <math>CD=3</math> such that the bisectors of acute angles <math>\angle{DAB}</math> and <math>\angle{ADC}</math> intersect at the midpoint of <math>\overline{BC}</math>. Find the square of the area of <math>ABCD</math>. | ||
− | ==Solution== | + | ==Solution 1== |
[[Image:2022AIME2-Q11.png|thumb|center|500px|2022 AIME II Q11(Hand-draw picture)]] | [[Image:2022AIME2-Q11.png|thumb|center|500px|2022 AIME II Q11(Hand-draw picture)]] | ||
Line 29: | Line 29: | ||
~DSAERF-CALMIT (https://binaryphi.site) | ~DSAERF-CALMIT (https://binaryphi.site) | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Denote by <math>M</math> the midpoint of segment <math>BC</math>. | ||
+ | Let points <math>P</math> and <math>Q</math> be on segment <math>AD</math>, such that <math>AP = AB</math> and <math>DQ = DC</math>. | ||
+ | |||
+ | Denote <math>\angle DAM = \alpha</math>, <math>\angle BAD = \beta</math>, <math>\angle BMA = \theta</math>, <math>\angle CMD = \phi</math>. | ||
+ | |||
+ | Denote <math>BM = x</math>. Because <math>M</math> is the midpoint of <math>BC</math>, <math>CM = x</math>. | ||
+ | |||
+ | Because <math>AM</math> is the angle bisector of <math>\angle BAD</math> and <math>AB = AP</math>, <math>\triangle BAM \cong \triangle PAM</math>. | ||
+ | Hence, <math>MP = MB</math> and <math>\angle AMP = \theta</math>. | ||
+ | Hence, <math>\angle MPD = \angle MAP + \angle PMA = \alpha + \theta</math>. | ||
+ | |||
+ | Because <math>DM</math> is the angle bisector of <math>\angle CDA</math> and <math>DC = DQ</math>, <math>\triangle CDM \cong \triangle QDM</math>. | ||
+ | Hence, <math>MQ = MC</math> and <math>\angle DMQ = \phi</math>. | ||
+ | Hence, <math>\angle MQA = \angle MDQ + \angle QMD = \beta + \phi</math>. | ||
+ | |||
+ | Because <math>M</math> is the midpoint of segment <math>BC</math>, <math>MB = MC</math>. | ||
+ | Because <math>MP = MB</math> and <math>MQ = MC</math>, <math>MP = MQ</math>. | ||
+ | Thus, <math>\angle MPD = \angle MQA</math>. | ||
+ | Thus, | ||
+ | \[ | ||
+ | \alpha + \theta = \beta + \phi . \hspace{1cm} (1) | ||
+ | \] | ||
+ | |||
+ | In <math>\triangle AMD</math>, <math>\angle AMD = 180^\circ - \angle MAD - \angle MDA = 180^\circ - \alpha - \beta</math>. | ||
+ | In addition, <math>\angle AMD = 180^\circ - \angle BMA - \angle CMD = 180^\circ - \theta - \phi</math>. | ||
+ | Thus, | ||
+ | \[ | ||
+ | \alpha + \beta = \theta + \phi . \hspace{1cm} (2) | ||
+ | \] | ||
+ | |||
+ | Taking <math>(1) + (2)</math>, we get <math>\alpha = \phi</math>. | ||
+ | Taking <math>(1) - (2)</math>, we get <math>\beta = \theta</math>. | ||
+ | |||
+ | Therefore, <math>\triangle ADM \sim \triangle AMB \sim \triangle MDC</math>. | ||
+ | |||
+ | Hence, <math>\frac{AD}{AM} = \frac{AM}{AB}</math> and <math>\frac{AD}{DM} = \frac{DM}{CD}</math>. | ||
+ | Thus, <math>AM = \sqrt{AD \cdot AD} = \sqrt{14}</math> and <math>DM = \sqrt{AD \cdot CD} = \sqrt{21}</math>. | ||
+ | |||
+ | In <math>\triangle ADM</math>, by applying the law of cosines, <math>\cos \angle AMD = \frac{AM^2 + DM^2 - AD^2}{2 AM \cdot DM} = - \frac{1}{\sqrt{6}}</math>. | ||
+ | Hence, <math>\sin \angle AMD = \sqrt{1 - \cos^2 \angle AMD} = \frac{\sqrt{5}}{\sqrt{6}}</math>. | ||
+ | Hence, <math>{\rm Area} \ \triangle ADM = \frac{1}{2} AM \cdot DM \dot \sin \angle AMD = \frac{7 \sqrt{5}}{2}</math>. | ||
+ | |||
+ | Therefore, | ||
+ | \begin{align*} | ||
+ | {\rm Area} \ ABCD & = {\rm Area} \ \triangle AMD + {\rm Area} \ \triangle ABM + {\rm Area} \ \triangle MCD \ | ||
+ | & = {\rm Area} \ \triangle AMD \left( 1 + \left( \frac{AM}{AD} \right)^2 + \left( \frac{MD}{AD} \right)^2 \right) \ | ||
+ | & = 6 \sqrt{5} . | ||
+ | \end{align*} | ||
+ | |||
+ | Therefore, the square of <math>{\rm Area} \ ABCD</math> is <math>\left( 6 \sqrt{5} \right)^2 = \boxed{\textbf{(180) }}</math>. | ||
+ | |||
+ | ~Steven Chen (www.professorchenedu.com) | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2022|n=II|num-b=10|num-a=12}} | {{AIME box|year=2022|n=II|num-b=10|num-a=12}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:48, 19 February 2022
Contents
[hide]Problem
Let be a convex quadrilateral with , , and such that the bisectors of acute angles and intersect at the midpoint of . Find the square of the area of .
Solution 1
According to the problem, we have , , , , and
Because is the midpoint of , we have , so:
Then, we can see that is an isosceles triangle with
Therefore, we could start our angle chasing: .
This is when we found that points , , , and are on a circle. Thus, . This is the time we found that .
Thus,
Point is the midpoint of , and . .
The area of this quadrilateral is the sum of areas of triangles:
Finally, the square of the area is
~DSAERF-CALMIT (https://binaryphi.site)
Solution 2
Denote by the midpoint of segment . Let points and be on segment , such that and .
Denote , , , .
Denote . Because is the midpoint of , .
Because is the angle bisector of and , . Hence, and . Hence, .
Because is the angle bisector of and , . Hence, and . Hence, .
Because is the midpoint of segment , . Because and , . Thus, . Thus, \[ \alpha + \theta = \beta + \phi . \hspace{1cm} (1) \]
In , . In addition, . Thus, \[ \alpha + \beta = \theta + \phi . \hspace{1cm} (2) \]
Taking , we get . Taking , we get .
Therefore, .
Hence, and . Thus, and .
In , by applying the law of cosines, . Hence, . Hence, .
Therefore,
Therefore, the square of is .
~Steven Chen (www.professorchenedu.com)
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.