Difference between revisions of "2022 AIME II Problems/Problem 8"
Burkinafaso (talk | contribs) |
Burkinafaso (talk | contribs) (→Solution 3) |
||
Line 53: | Line 53: | ||
==Solution 3== | ==Solution 3== | ||
− | We need to find all | + | We need to find all numbers that are multiples of <math>4</math>, <math>5</math>, and or <math>6</math> which are also multiples of <math>4</math>, <math>5</math>, or <math>6</math> when <math>1</math> is added to them. |
We begin by noting that the LCM of <math>4</math>, <math>5</math>, and <math>6</math> is <math>60</math>. We can therefore simplify the problem by finding all such numbers described above between <math>1</math> and <math>60</math> and multiplying the quantity of such numbers by <math>10</math> (<math>600</math>/<math>60</math> = <math>10</math>). | We begin by noting that the LCM of <math>4</math>, <math>5</math>, and <math>6</math> is <math>60</math>. We can therefore simplify the problem by finding all such numbers described above between <math>1</math> and <math>60</math> and multiplying the quantity of such numbers by <math>10</math> (<math>600</math>/<math>60</math> = <math>10</math>). |
Revision as of 14:50, 19 February 2022
Contents
[hide]Problem
Find the number of positive integers whose value can be uniquely determined when the values of
,
, and
are given, where
denotes the greatest integer less than or equal to the real number
.
Solution
1. For to be uniquely determined,
AND
both need to be a multiple of
or
Since either
or
is odd, we know that either
or
has to be a multiple of
We can state the following cases:
1. is a multiple of
and
is a multiple of
2. is a multiple of
and
is a multiple of
3. is a multiple of
and
is a multiple of
4. is a multiple of
and
is a multiple of
Solving for each case, we see that there are possibilities for cases 1 and 3 each, and
possibilities for cases 2 and 4 each. However, we overcounted the cases where
1. is a multiple of
and
is a multiple of
2. is a multiple of
and
is a multiple of
Each case has possibilities.
Adding all the cases and correcting for overcounting, we get
~Lucasfunnyface
Side note: solution does not explain how we found the 20 possibilities, 30, possibilities, etc. It would be great if somebody added that in.
Solution 2
The problem is the same as asking how many unique sets of values of ,
, and
can be produced by one and only one value of
for positive integers
less than or equal to 600.
Seeing that we are dealing with the unique values of the floor function, we ought to examine when it is about to change values, for instance, when is close to a multiple of 4 in
.
For a particular value of , let
,
, and
be the original values of
,
, and
, respectively.
Notice when
and
, the value of
will be 1 less than the original
. The value of
will be 1 greater than the original value of
.
More importantly, this means that no other value less than or greater than will be able to produce the set of original values of
,
, and
, since they make either
or
differ by at least 1.
Generalizing, we find that must satisfy:
Where and
are pairs of distinct values of 4, 5, and 6.
Plugging in the values of and
, finding the solutions to the 6 systems of linear congruences, and correcting for the repeated values, we find that there are
solutions of
.
Solution 3
We need to find all numbers that are multiples of ,
, and or
which are also multiples of
,
, or
when
is added to them.
We begin by noting that the LCM of ,
, and
is
. We can therefore simplify the problem by finding all such numbers described above between
and
and multiplying the quantity of such numbers by
(
/
=
).
After making a simple list of the numbers between and
and going through it, we see that the numbers meeting this condition are
,
,
,
,
,
,
, and
. This gives us
numbers.
*
=
.
Sidenote
The mod computation can be more easily done by first finding the solutions in the range 1-60, correcting for overcounting, and multiplying by 10.
Alternatively, before taking the time to consider a systematic solution, you can notice that the general pattern of the problem “repeats” every 60 positive integers. From there, bash to see how many of the first 60 numbers work and multiply by 10.
For solving a system of linear congruences, see https://youtu.be/-a88u99nmkw
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.