Difference between revisions of "2021 AIME II Problems/Problem 9"

m
(Swapped claim #)
Line 9: Line 9:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
\gcd\left(2^m+1,2^n-1\right)\cdot\gcd\left(2^m-1,2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \
 
\gcd\left(2^m+1,2^n-1\right)\cdot\gcd\left(2^m-1,2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \
\gcd\left(\left(2^m+1\right)\left(2^m-1\right),2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \hspace{12mm} &&\text{by }\textbf{Claim 2} \
+
\gcd\left(\left(2^m+1\right)\left(2^m-1\right),2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \hspace{12mm} &&\text{by }\textbf{Claim 1} \
 
\gcd\left(2^{2m}-1,2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \
 
\gcd\left(2^{2m}-1,2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \
2^{\gcd(2m,n)}-1&>2^{\gcd(m,n)}-1 &&\text{by }\textbf{Claim 1} \
+
2^{\gcd(2m,n)}-1&>2^{\gcd(m,n)}-1 &&\text{by }\textbf{Claim 2} \
 
\gcd(2m,n)&>\gcd(m,n),
 
\gcd(2m,n)&>\gcd(m,n),
 
\end{align*}</cmath>
 
\end{align*}</cmath>
Line 44: Line 44:
  
 
==Remarks==
 
==Remarks==
===Claim 1 (Olympiad Number Theory Lemma)===
+
===Claim 1 (GCD Property)===
 +
<b>If <math>\boldsymbol{r,s,}</math> and <math>\boldsymbol{t}</math> are positive integers such that <math>\boldsymbol{\gcd(r,s)=1,}</math> then <math>\boldsymbol{\gcd(r,t)\cdot\gcd(s,t)=\gcd(rs,t).}</math></b>
 +
 
 +
As <math>r</math> and <math>s</math> are relatively prime (have no prime divisors in common), this property is intuitive.
 +
 
 +
~MRENTHUSIASM
 +
 
 +
===Claim 2 (Olympiad Number Theory Lemma)===
 
<b>If <math>\boldsymbol{u,a,}</math> and <math>\boldsymbol{b}</math> are positive integers such that <math>\boldsymbol{u\geq2,}</math> then <math>\boldsymbol{\gcd\left(u^a-1,u^b-1\right)=u^{\gcd(a,b)}-1.}</math></b>
 
<b>If <math>\boldsymbol{u,a,}</math> and <math>\boldsymbol{b}</math> are positive integers such that <math>\boldsymbol{u\geq2,}</math> then <math>\boldsymbol{\gcd\left(u^a-1,u^b-1\right)=u^{\gcd(a,b)}-1.}</math></b>
  
Line 51: Line 58:
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
===Claim 1 Proof 1 (Euclidean Algorithm)===
+
===Claim 2 Proof 1 (Euclidean Algorithm)===
 
If <math>a=b,</math> then <math>\gcd(a,b)=a=b,</math> from which the claim is clearly true.
 
If <math>a=b,</math> then <math>\gcd(a,b)=a=b,</math> from which the claim is clearly true.
  
Line 66: Line 73:
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
===Claim 1 Proof 2 (Bézout's Identity)===
+
===Claim 2 Proof 2 (Bézout's Identity)===
 
Let <math>d=\gcd\left(u^a-1,u^b-1\right).</math> It follows that <math>u^a\equiv1\pmod{d}</math> and <math>u^b\equiv1\pmod{d}.</math>
 
Let <math>d=\gcd\left(u^a-1,u^b-1\right).</math> It follows that <math>u^a\equiv1\pmod{d}</math> and <math>u^b\equiv1\pmod{d}.</math>
  
Line 78: Line 85:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
Since <math>u^{\gcd(a,b)}-1</math> is a common divisor of <math>u^a-1</math> and <math>u^b-1,</math> we conclude that <math>u^{\gcd(a,b)}-1=d,</math> from which the proof is complete.
 
Since <math>u^{\gcd(a,b)}-1</math> is a common divisor of <math>u^a-1</math> and <math>u^b-1,</math> we conclude that <math>u^{\gcd(a,b)}-1=d,</math> from which the proof is complete.
 
~MRENTHUSIASM
 
 
===Claim 2 (GCD Property)===
 
<b>If <math>\boldsymbol{r,s,}</math> and <math>\boldsymbol{t}</math> are positive integers such that <math>\boldsymbol{\gcd(r,s)=1,}</math> then <math>\boldsymbol{\gcd(r,t)\cdot\gcd(s,t)=\gcd(rs,t).}</math></b>
 
 
As <math>r</math> and <math>s</math> are relatively prime (have no prime divisors in common), this property is intuitive.
 
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM

Revision as of 15:05, 19 February 2022

Problem

Find the number of ordered pairs $(m, n)$ such that $m$ and $n$ are positive integers in the set $\{1, 2, ..., 30\}$ and the greatest common divisor of $2^m + 1$ and $2^n - 1$ is not $1$.

Solution

This solution refers to the Remarks section.

By the Euclidean Algorithm, we have \[\gcd\left(2^m+1,2^m-1\right)=\gcd\left(2,2^m-1\right)=1.\] We are given that $\gcd\left(2^m+1,2^n-1\right)>1.$ Multiplying both sides by $\gcd\left(2^m-1,2^n-1\right)$ gives \begin{align*} \gcd\left(2^m+1,2^n-1\right)\cdot\gcd\left(2^m-1,2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \\ \gcd\left(\left(2^m+1\right)\left(2^m-1\right),2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \hspace{12mm} &&\text{by }\textbf{Claim 1} \\ \gcd\left(2^{2m}-1,2^n-1\right)&>\gcd\left(2^m-1,2^n-1\right) \\ 2^{\gcd(2m,n)}-1&>2^{\gcd(m,n)}-1 &&\text{by }\textbf{Claim 2} \\ \gcd(2m,n)&>\gcd(m,n), \end{align*} which implies that $n$ must have more factors of $2$ than $m$ does.

We construct the following table for the first $30$ positive integers: \[\begin{array}{c|c|c} && \\ [-2.5ex] \boldsymbol{\#}\textbf{ of Factors of }\boldsymbol{2} & \textbf{Numbers} & \textbf{Count} \\ \hline && \\ [-2.25ex]  0 & 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29 & 15 \\  && \\ [-2.25ex]  1 & 2,6,10,14,18,22,26,30 & 8 \\ && \\ [-2.25ex]  2 & 4,12,20,28 & 4 \\    && \\ [-2.25ex]  3 & 8,24 & 2 \\  && \\ [-2.25ex]  4 & 16 & 1 \\ \end{array}\] To count the ordered pairs $(m,n),$ we perform casework on the number of factors of $2$ that $m$ has:

  1. If $m$ has $0$ factors of $2,$ then $m$ has $15$ options and $n$ has $8+4+2+1=15$ options. So, this case has $15\cdot15=225$ ordered pairs.
  2. If $m$ has $1$ factor of $2,$ then $m$ has $8$ options and $n$ has $4+2+1=7$ options. So, this case has $8\cdot7=56$ ordered pairs.
  3. If $m$ has $2$ factors of $2,$ then $m$ has $4$ options and $n$ has $2+1=3$ options. So, this case has $4\cdot3=12$ ordered pairs.
  4. If $m$ has $3$ factors of $2,$ then $m$ has $2$ options and $n$ has $1$ option. So, this case has $2\cdot1=2$ ordered pairs.

Together, the answer is $225+56+12+2=\boxed{295}.$

~Lcz ~MRENTHUSIASM

Remarks

Claim 1 (GCD Property)

If $\boldsymbol{r,s,}$ and $\boldsymbol{t}$ are positive integers such that $\boldsymbol{\gcd(r,s)=1,}$ then $\boldsymbol{\gcd(r,t)\cdot\gcd(s,t)=\gcd(rs,t).}$

As $r$ and $s$ are relatively prime (have no prime divisors in common), this property is intuitive.

~MRENTHUSIASM

Claim 2 (Olympiad Number Theory Lemma)

If $\boldsymbol{u,a,}$ and $\boldsymbol{b}$ are positive integers such that $\boldsymbol{u\geq2,}$ then $\boldsymbol{\gcd\left(u^a-1,u^b-1\right)=u^{\gcd(a,b)}-1.}$

There are two proofs to this claim, as shown below.

~MRENTHUSIASM

Claim 2 Proof 1 (Euclidean Algorithm)

If $a=b,$ then $\gcd(a,b)=a=b,$ from which the claim is clearly true.

Otherwise, let $a>b$ without the loss of generality. For all integers $p$ and $q$ such that $p>q>0,$ the Euclidean Algorithm states that \[\gcd(p,q)=\gcd(p-q,q)=\cdots=\gcd(p\operatorname{mod}q,q).\] We apply this result repeatedly to reduce the larger number: \[\gcd\left(u^a-1,u^b-1\right)=\gcd\left(u^a-1-u^{a-b}\left(u^b-1\right),u^b-1\right)=\gcd\left(u^{a-b}-1,u^b-1\right).\] Continuing, we have \begin{align*} \gcd\left(u^a-1,u^b-1\right)&=\gcd\left(u^{a-b}-1,u^b-1\right) \\ & \ \vdots \\ &=\gcd\left(u^{\gcd(a,b)}-1,u^{\gcd(a,b)}-1\right) \\ &=u^{\gcd(a,b)}-1, \end{align*} from which the proof is complete.

~MRENTHUSIASM

Claim 2 Proof 2 (Bézout's Identity)

Let $d=\gcd\left(u^a-1,u^b-1\right).$ It follows that $u^a\equiv1\pmod{d}$ and $u^b\equiv1\pmod{d}.$

By Bézout's Identity, there exist integers $x$ and $y$ such that $ax+by=\gcd(a,b),$ so \[u^{\gcd(a,b)}=u^{ax+by}=(u^a)^x\cdot(u^b)^y\equiv1\pmod{d},\] from which $u^{\gcd(a,b)}-1\equiv0\pmod{d}.$ We know that $u^{\gcd(a,b)}-1\geq d.$

Next, we notice that \begin{align*} u^a-1&=\left(u^{\gcd(a,b)}-1\right)\left(u^{a-\gcd{(a,b)}}+u^{a-2\gcd{(a,b)}}+u^{a-3\gcd{(a,b)}}+\cdots+1\right), \\ u^b-1&=\left(u^{\gcd(a,b)}-1\right)\left(u^{b-\gcd{(a,b)}}+u^{b-2\gcd{(a,b)}}+u^{b-3\gcd{(a,b)}}+\cdots+1\right). \end{align*} Since $u^{\gcd(a,b)}-1$ is a common divisor of $u^a-1$ and $u^b-1,$ we conclude that $u^{\gcd(a,b)}-1=d,$ from which the proof is complete.

~MRENTHUSIASM

See Also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png