Difference between revisions of "2010 AIME II Problems/Problem 6"
(→Solution) |
(→Solution 2) |
||
Line 17: | Line 17: | ||
Therefore, the answer is <math>4 \cdot 2 = \boxed{008}</math>. | Therefore, the answer is <math>4 \cdot 2 = \boxed{008}</math>. | ||
== Solution 2 == | == Solution 2 == | ||
+ | <math>x^4-nx+63=(x^2+ax+b)(x^2+cx+d)</math>. From this, we get that <math>bd=63\implies d=\frac{63}{b}</math> and <math>a+c=0\implies c=-a</math>. Plugging this back into the equation, we get <math>x^4-nx+63=(x^2+ax+b)(x^2-ax+\frac{63}{b})</math>. Expanding gives us <math>x^4-nx+63=x^4-(a^2+b+\frac{63}{b})x^2+(\frac{63a}{b}-ab)x+63</math> | ||
== See also == | == See also == |
Revision as of 16:26, 29 June 2022
Contents
Problem
Find the smallest positive integer with the property that the polynomial can be written as a product of two nonconstant polynomials with integer coefficients.
Solution 1
You can factor the polynomial into two quadratic factors or a linear and a cubic factor.
For two quadratic factors, let and be the two quadratics, so that
Therefore, again setting coefficients equal, , , , and so .
Since , the only possible values for are and . From this we find that the possible values for are and .
For the case of one linear and one cubic factor, doing a similar expansion and matching of the coefficients gives the smallest in that case to be .
Therefore, the answer is .
Solution 2
. From this, we get that and . Plugging this back into the equation, we get . Expanding gives us
See also
2010 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.