Difference between revisions of "2010 AIME II Problems/Problem 6"
(→Solution 2) |
(→Solution 2) |
||
Line 17: | Line 17: | ||
Therefore, the answer is <math>4 \cdot 2 = \boxed{008}</math>. | Therefore, the answer is <math>4 \cdot 2 = \boxed{008}</math>. | ||
== Solution 2 == | == Solution 2 == | ||
− | Let <math>x^4-nx+63=(x^2+ax+b)(x^2+cx+d)</math>. From this, we get that <math>bd=63\implies d=\frac{63}{b}</math> and <math>a+c=0\implies c=-a</math>. Plugging this back into the equation, we get <math>x^4-nx+63=(x^2+ax+b)\left(x^2-ax+\frac{63}{b}\right)</math>. Expanding gives us <math>x^4-nx+63=x^4 | + | Let <math>x^4-nx+63=(x^2+ax+b)(x^2+cx+d)</math>. From this, we get that <math>bd=63\implies d=\frac{63}{b}</math> and <math>a+c=0\implies c=-a</math>. Plugging this back into the equation, we get <math>x^4-nx+63=(x^2+ax+b)\left(x^2-ax+\frac{63}{b}\right)</math>. Expanding gives us <math>x^4-nx+63=x^4+\left(-a^2+b+\frac{63}{b}\right)x^2+\left(\frac{63a}{b}-ab\right)x+63</math>. Therefore <math>-a^2+b+\frac{63}{b}=0</math>. Simplifying gets us <math>b(a^2-b)=63</math>. Since <math>a</math> and <math>b</math> must be integers, we can use guess and check for values of <math>b</math> because <math>b</math> must be a factor of <math>63</math>. Note that <math>b</math> cannot be negative because <math>a</math> would be imaginary. After guessing and checking, we find that the possible values of <math>(a,b)</math> are <math>(\pm 8, 1), (\pm 4, 7), (\pm 4, 9),</math> and <math>\pm 8, 63)</math>. |
== See also == | == See also == |
Revision as of 16:34, 29 June 2022
Contents
Problem
Find the smallest positive integer with the property that the polynomial can be written as a product of two nonconstant polynomials with integer coefficients.
Solution 1
You can factor the polynomial into two quadratic factors or a linear and a cubic factor.
For two quadratic factors, let and be the two quadratics, so that
Therefore, again setting coefficients equal, , , , and so .
Since , the only possible values for are and . From this we find that the possible values for are and .
For the case of one linear and one cubic factor, doing a similar expansion and matching of the coefficients gives the smallest in that case to be .
Therefore, the answer is .
Solution 2
Let . From this, we get that and . Plugging this back into the equation, we get . Expanding gives us . Therefore . Simplifying gets us . Since and must be integers, we can use guess and check for values of because must be a factor of . Note that cannot be negative because would be imaginary. After guessing and checking, we find that the possible values of are and .
See also
2010 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.