Difference between revisions of "2022 AIME II Problems/Problem 11"
(→Solution 3 (Visual)) |
m (→Solution 1) |
||
Line 2: | Line 2: | ||
Let <math>ABCD</math> be a convex quadrilateral with <math>AB=2</math>, <math>AD=7</math>, and <math>CD=3</math> such that the bisectors of acute angles <math>\angle{DAB}</math> and <math>\angle{ADC}</math> intersect at the midpoint of <math>\overline{BC}</math>. Find the square of the area of <math>ABCD</math>. | Let <math>ABCD</math> be a convex quadrilateral with <math>AB=2</math>, <math>AD=7</math>, and <math>CD=3</math> such that the bisectors of acute angles <math>\angle{DAB}</math> and <math>\angle{ADC}</math> intersect at the midpoint of <math>\overline{BC}</math>. Find the square of the area of <math>ABCD</math>. | ||
− | + | Vishal is gay | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 2== | ==Solution 2== |
Revision as of 11:58, 7 February 2023
Contents
[hide]Problem
Let be a convex quadrilateral with , , and such that the bisectors of acute angles and intersect at the midpoint of . Find the square of the area of .
Vishal is gay
Solution 2
Denote by the midpoint of segment . Let points and be on segment , such that and .
Denote , , , .
Denote . Because is the midpoint of , .
Because is the angle bisector of and , . Hence, and . Hence, .
Because is the angle bisector of and , . Hence, and . Hence, .
Because is the midpoint of segment , . Because and , .
Thus, .
Thus,
In , . In addition, . Thus,
Taking , we get . Taking , we get .
Therefore, .
Hence, and . Thus, and .
In , by applying the law of cosines, . Hence, . Hence, .
Therefore,
Therefore, the square of is .
~Steven Chen (www.professorchenedu.com)
Solution 3 (Visual)
Claim
In the triangle is the midpoint of is the point of intersection of the circumcircle and the bisector of angle Then
Proof
Let Then
Let be the intersection point of the perpendicular dropped from to with the circle.
Then the sum of arcs
Let be the point of intersection of the line with the circle. is perpendicular to the sum of arcs coincides with
The inscribed angles is symmetric to with respect to
Solution
Let and on
Then
Quadrilateral is cyclic. Let Then
Circle centered at is its diameter, since they both complete to
since they are the exterior angles of an isosceles by two angles.
The height dropped from to is
The areas of triangles and are equal to area of is
The area of is
vladimir.shelomovskii@gmail.com, vvsss
Video Solution by The Power of Logic
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.