Difference between revisions of "1964 AHSME Problems/Problem 30"
(Created page with "==Problem== The larger root minus the smaller root of the equation <cmath>(7+4\sqrt{3})x^2+(2+\sqrt{3})x-2=0</cmath> is <math>\textbf{(A) }-2+3\sqrt{3}\qquad\textbf{(B) }2-\sq...") |
(→Solution 2) |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
<math>\textbf{(A) }-2+3\sqrt{3}\qquad\textbf{(B) }2-\sqrt{3}\qquad\textbf{(C) }6+3\sqrt{3}\qquad\textbf{(D) }6-3\sqrt{3}\qquad \textbf{(E) }3\sqrt{3}+2</math> | <math>\textbf{(A) }-2+3\sqrt{3}\qquad\textbf{(B) }2-\sqrt{3}\qquad\textbf{(C) }6+3\sqrt{3}\qquad\textbf{(D) }6-3\sqrt{3}\qquad \textbf{(E) }3\sqrt{3}+2</math> | ||
+ | |||
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | Dividing the quadratic by <math>7 + 4\sqrt{3}</math> to obtain a monic polynomial will give a linear coefficient of <math>\frac{2 + \sqrt{3}}{7 + 4\sqrt{3}}</math>. Rationalizing the denominator gives: | ||
+ | |||
+ | <math>\frac{(2 + \sqrt{3})(7 - 4\sqrt{3})}{7^2 - 4^2 \cdot 3}</math> | ||
+ | |||
+ | <math>=\frac{14 - 12 - \sqrt{3}}{49-48}</math> | ||
+ | |||
+ | <math>=2 - \sqrt{3}</math> | ||
+ | |||
+ | Dividing the constant term by <math>7 + 4\sqrt{3}</math> (and using the same radical conjugate as above) gives: | ||
+ | |||
+ | <math>\frac{-2}{7 + 4\sqrt{3}}</math> | ||
+ | |||
+ | <math>=-2(7 - 4\sqrt{3})</math> | ||
+ | |||
+ | <math>=8\sqrt{3} - 14</math> | ||
+ | |||
+ | So, dividing the original quadratic by the coefficient of <math>x^2</math> gives <math>x^2 + (2 - \sqrt{3})x + 8\sqrt{3} - 14 = 0</math> | ||
+ | |||
+ | From the quadratic formula, the positive difference of the roots is <math>\frac{\sqrt{b^2 - 4ac}}{a}</math>. Plugging in gives: | ||
+ | |||
+ | <math>\sqrt{(2 - \sqrt{3})^2 - 4(8\sqrt{3} - 14)(1)}</math> | ||
+ | |||
+ | <math>=\sqrt{7 - 4\sqrt{3} - 32\sqrt{3} + 56}</math> | ||
+ | |||
+ | <math>=\sqrt{63 - 36\sqrt{3}}</math> | ||
+ | |||
+ | <math>=3\sqrt{7 - 4\sqrt{3}}</math> | ||
+ | |||
+ | Note that if we take <math>\frac{1}{3}</math> of one of the answer choices and square it, we should get <math>7 - 4\sqrt{3}</math>. | ||
+ | The only answers that are (sort of) divisible by <math>3</math> are <math>6 \pm 3\sqrt{3}</math>, so those would make a good first guess. And given that there is a negative sign underneath the radical, <math>6 - 3\sqrt{3}</math> is the most logical place to start. | ||
+ | |||
+ | Since <math>\frac{1}{3}</math> of the answer is <math>2 - \sqrt{3}</math>, and <math>(2 - \sqrt{3})^2 = 7 - 4\sqrt{3}</math>, the answer is indeed <math>\boxed{\textbf{(D)}}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | '''Submitted by BinouTheGuineaPig''' | ''A step-by-step solution'' | ||
+ | |||
+ | The original equation can be manipulated as follows. | ||
+ | |||
+ | <math>(4+4\sqrt{3}+3)x^2+(2+\sqrt{3})x-2=0</math> | ||
+ | |||
+ | <math>(2+\sqrt{3})^2x^2+(2+\sqrt{3})x-2=0</math> | ||
+ | |||
+ | Substituting <math>u = (2+\sqrt{3})x</math>, | ||
+ | |||
+ | <math>\quad u^2+u-2=0</math> | ||
+ | |||
+ | <math>\quad (u-1)(u+2)=0</math> | ||
+ | |||
+ | <math>\quad u=1</math> or <math>u=-2</math> | ||
+ | |||
+ | First root of <math>x</math>: | ||
+ | |||
+ | <math>\quad (2+\sqrt{3})x_1=1</math> | ||
+ | |||
+ | <math>\quad x_1=\frac{1}{2+\sqrt{3}}</math> | ||
+ | |||
+ | <math>\quad x_1=2-\sqrt{3}</math> | ||
+ | |||
+ | Second root of <math>x</math>: | ||
+ | |||
+ | <math>\quad (2+\sqrt{3})x_2=-2</math> | ||
+ | |||
+ | <math>\quad x_2=\frac{-2}{2+\sqrt{3}}</math> | ||
+ | |||
+ | <math>\quad x_2=-2(2-\sqrt{3})</math> | ||
+ | |||
+ | <math>\quad x_2=-4+2\sqrt{3}</math> | ||
+ | |||
+ | Now, to find which root of <math>x</math> is larger: | ||
+ | |||
+ | Assume that | ||
+ | |||
+ | <math>\quad 2-\sqrt{3}>-4+2\sqrt{3}</math>, and so | ||
+ | |||
+ | <math>\quad 6>3\sqrt{3}</math> | ||
+ | |||
+ | <math>\quad 2>\sqrt{3}</math> | ||
+ | |||
+ | <math>\quad \sqrt{4}>\sqrt{3}</math> which is true. Hence, <math>x_1>x_2</math>. | ||
+ | |||
+ | Finally, finding the difference between the larger and smaller roots of <math>x</math>: | ||
+ | |||
+ | <math>\quad x_1-x_2</math> | ||
+ | |||
+ | <math>\quad =(2-\sqrt{3})-(-4+2\sqrt{3})</math> | ||
+ | |||
+ | <math>\quad =6-3\sqrt{3}</math> | ||
+ | |||
+ | Therefore, the answer is <math>\boxed{\textbf{(D)}}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME 40p box|year=1964|num-b=29|num-a=31}} | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 13:55, 24 March 2023
Contents
[hide]Problem
The larger root minus the smaller root of the equation is
Solution 1
Dividing the quadratic by to obtain a monic polynomial will give a linear coefficient of . Rationalizing the denominator gives:
Dividing the constant term by (and using the same radical conjugate as above) gives:
So, dividing the original quadratic by the coefficient of gives
From the quadratic formula, the positive difference of the roots is . Plugging in gives:
Note that if we take of one of the answer choices and square it, we should get . The only answers that are (sort of) divisible by are , so those would make a good first guess. And given that there is a negative sign underneath the radical, is the most logical place to start.
Since of the answer is , and , the answer is indeed .
Solution 2
Submitted by BinouTheGuineaPig | A step-by-step solution
The original equation can be manipulated as follows.
Substituting ,
or
First root of :
Second root of :
Now, to find which root of is larger:
Assume that
, and so
which is true. Hence, .
Finally, finding the difference between the larger and smaller roots of :
Therefore, the answer is .
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Problem 31 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.