Difference between revisions of "2000 AIME II Problems/Problem 10"

m
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A sequence of numbers <math>x_{1},x_{2},x_{3},\ldots,x_{100}</math> has the property that, for every integer <math>k</math> between <math>1</math> and <math>100,</math> inclusive, the number <math>x_{k}</math> is <math>k</math> less than the sum of the other <math>99</math> numbers. Given that <math>x_{50} = m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m + n</math>.
+
A circle is inscribed in quadrilateral <math>ABCD</math>, tangent to <math>\overline{AB}</math> at <math>P</math> and to <math>\overline{CD}</math> at <math>Q</math>. Given that <math>AP=19</math>, <math>PB=26</math>, <math>CQ=37</math>, and <math>QD=23</math>, find the square of the radius of the circle.
  
 
== Solution ==
 
== Solution ==

Revision as of 18:34, 11 November 2007

Problem

A circle is inscribed in quadrilateral $ABCD$, tangent to $\overline{AB}$ at $P$ and to $\overline{CD}$ at $Q$. Given that $AP=19$, $PB=26$, $CQ=37$, and $QD=23$, find the square of the radius of the circle.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions