Difference between revisions of "1986 AHSME Problems"

m
m (Problem 18)
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{AHSME Problems
 +
|year = 1986
 +
}}
 
== Problem 1 ==
 
== Problem 1 ==
<math>[x-(y-x)] - [(x-y) - x] =</math>
+
<math>[x-(y-z)] - [(x-y) - z] =</math>
  
 
<math>\textbf{(A)}\ 2y \qquad
 
<math>\textbf{(A)}\ 2y \qquad
\textbf{(B)}\ 2x \qquad
+
\textbf{(B)}\ 2z \qquad
 
\textbf{(C)}\ -2y \qquad
 
\textbf{(C)}\ -2y \qquad
\textbf{(D)}\ -2x \qquad
+
\textbf{(D)}\ -2z \qquad
 
\textbf{(E)}\ 0 </math>     
 
\textbf{(E)}\ 0 </math>     
 
    
 
    
Line 24: Line 27:
 
== Problem 3 ==
 
== Problem 3 ==
 
   
 
   
<math>\triangle ABC</math> is a right angle at <math>C</math> and <math>\angle A = 20^\circ</math>. If <math>BD</math> (<math>D</math> in <math>\overline{AC}</math>) is the bisector of <math>\angle ABC</math>, then <math>\angle BDC =</math>
+
<math>\triangle ABC</math> has a right angle at <math>C</math> and <math>\angle A = 20^\circ</math>. If <math>BD</math> (<math>D</math> in <math>\overline{AC}</math>) is the bisector of <math>\angle ABC</math>, then <math>\angle BDC =</math>
  
 
<math>\textbf{(A)}\ 40^\circ \qquad
 
<math>\textbf{(A)}\ 40^\circ \qquad
Line 63: Line 66:
 
== Problem 6 ==
 
== Problem 6 ==
  
Solve <math>t</math> in this system of equation:
+
Using a table of a certain height, two identical blocks of wood are placed as shown in Figure 1.  Length <math>r</math> is found to be <math>32</math> inches.  After rearranging the blocks as in Figure 2, length <math>s</math> is found to be <math>28</math> inches.  How high is the table?
  
<cmath>t-w+l = 32\quad \
+
<asy>
t-l+w = 28</cmath>
+
size(300);
 +
defaultpen(linewidth(0.8)+fontsize(13pt));
 +
path table = origin--(1,0)--(1,6)--(6,6)--(6,0)--(7,0)--(7,7)--(0,7)--cycle;
 +
path block = origin--(3,0)--(3,1.5)--(0,1.5)--cycle;
 +
path rotblock = origin--(1.5,0)--(1.5,3)--(0,3)--cycle;
 +
draw(table^^shift((14,0))*table);
 +
filldraw(shift((7,0))*block^^shift((5.5,7))*rotblock^^shift((21,0))*rotblock^^shift((18,7))*block,gray);
 +
draw((7.25,1.75)--(8.5,3.5)--(8.5,8)--(7.25,9.75),Arrows(size=5));
 +
draw((21.25,3.25)--(22,3.5)--(22,8)--(21.25,8.25),Arrows(size=5));
 +
unfill((8,5)--(8,6.5)--(9,6.5)--(9,5)--cycle);
 +
unfill((21.5,5)--(21.5,6.5)--(23,6.5)--(23,5)--cycle);
 +
label("$r$",(8.5,5.75));
 +
label("$s$",(22,5.75));
 +
</asy>
  
<math>\textbf{(A)}\ 28 \qquad
+
<math>\textbf{(A) }28\text{ inches}\qquad\textbf{(B) }29\text{ inches}\qquad\textbf{(C) }30\text{ inches}\qquad\textbf{(D) }31\text{ inches}\qquad\textbf{(E) }32\text{ inches}</math>
\textbf{(B)}\ 29 \qquad
 
\textbf{(C)}\ 30 \qquad
 
\textbf{(D)}\ 31 \qquad
 
\textbf{(E)}\ 32 </math>  
 
 
    
 
    
 
[[1986 AHSME Problems/Problem 6|Solution]]
 
[[1986 AHSME Problems/Problem 6|Solution]]
Line 90: Line 102:
 
== Problem 8 ==
 
== Problem 8 ==
  
The population of the United States in <math>1980</math> was <math>226,504,825</math>. The area of the country is <math>3,615,122</math> square miles. The are <math>(5280)^{2}</math>  
+
The population of the United States in <math>1980</math> was <math>226,504,825</math>. The area of the country is <math>3,615,122</math> square miles. There are <math>(5280)^{2}</math>  
 
square feet in one square mile. Which number below best approximates the average number of square feet per person?
 
square feet in one square mile. Which number below best approximates the average number of square feet per person?
  
Line 115: Line 127:
 
== Problem 10 ==
 
== Problem 10 ==
  
The <math>120</math> permutations of the <math>AHSME</math> are arranged in dictionary order as if each were an ordinary five-letter word.  
+
The <math>120</math> permutations of <math>AHSME</math> are arranged in dictionary order as if each were an ordinary five-letter word.  
The last letter of the <math>85</math>th word in this list is:
+
The last letter of the <math>86</math>th word in this list is:
  
 
<math>\textbf{(A)}\ \text{A} \qquad
 
<math>\textbf{(A)}\ \text{A} \qquad
Line 153: Line 165:
  
 
John scores <math>93</math> on this year's AHSME. Had the old scoring system still been in effect, he would score only <math>84</math> for the same answers.  
 
John scores <math>93</math> on this year's AHSME. Had the old scoring system still been in effect, he would score only <math>84</math> for the same answers.  
How many questions does he leave unanswered? (In the new scoring system one receives <math>5</math> points for correct answers,
+
How many questions does he leave unanswered? (In the new scoring system that year, one received <math>5</math> points for each correct answer,
<math>0</math> points for wrong answers, and <math>2</math> points for unanswered questions. In the old system,  
+
<math>0</math> points for each wrong answer, and <math>2</math> points for each problem left unanswered. In the previous scoring system,  
 
one started with <math>30</math> points, received <math>4</math> more for each correct answer,  
 
one started with <math>30</math> points, received <math>4</math> more for each correct answer,  
lost one point for each wrong answer, and neither gained nor lost points for unanswered questions.
+
lost <math>1</math> point for each wrong answer, and neither gained nor lost points for unanswered questions.)
There are <math>30</math> questions in the <math>1986</math> AHSME.)
 
  
 
<math>\textbf{(A)}\ 6\qquad
 
<math>\textbf{(A)}\ 6\qquad
Line 182: Line 193:
  
 
Suppose hops, skips and jumps are specific units of length. If <math>b</math> hops equals <math>c</math> skips, <math>d</math> jumps equals <math>e</math> hops,  
 
Suppose hops, skips and jumps are specific units of length. If <math>b</math> hops equals <math>c</math> skips, <math>d</math> jumps equals <math>e</math> hops,  
and <math>f</math>Vjumps equals <math>g</math> meters, then one meter equals how many skips?
+
and <math>f</math> jumps equals <math>g</math> meters, then one meter equals how many skips?
  
 
<math>\textbf{(A)}\ \frac{bdg}{cef}\qquad
 
<math>\textbf{(A)}\ \frac{bdg}{cef}\qquad
Line 194: Line 205:
 
== Problem 15 ==
 
== Problem 15 ==
  
A student attempted to compute the average <math>A</math> of <math>x, y</math> and <math>z</math> by computing the average of <math>x</math> and <math>y</math>,  
+
A student attempted to compute the average, <math>A</math>, of <math>x, y</math> and <math>z</math> by computing the average of <math>x</math> and <math>y</math>, and then computing the average of the result and <math>z</math>. Whenever <math>x < y < z</math>, the student's final result is
and then computing the average of the result and <math>z</math>. Whenever <math>x < y < z</math>, the student's final result is
 
  
 
<math>\textbf{(A)}\ \text{correct}\quad
 
<math>\textbf{(A)}\ \text{correct}\quad
Line 249: Line 259:
  
 
A plane intersects a right circular cylinder of radius <math>1</math> forming an ellipse.  
 
A plane intersects a right circular cylinder of radius <math>1</math> forming an ellipse.  
If the major axis of the ellipse of <math>50\%</math> longer than the minor axis, the length of the major axis is
+
If the major axis of the ellipse is <math>50\%</math> longer than the minor axis, the length of the major axis is
  
 
<math>\textbf{(A)}\ 1\qquad
 
<math>\textbf{(A)}\ 1\qquad
Line 329: Line 339:
 
== Problem 23 ==
 
== Problem 23 ==
  
Let N = <math>69^{5} + 5*69^{4} + 10*69^{3} + 10*69^{2} + 5*69 + 1</math>. How many positive integers are factors of <math>N</math>?
+
Let <math>N = 69^{5} + 5 \cdot 69^{4} + 10 \cdot 69^{3} + 10 \cdot 69^{2} + 5 \cdot 69 + 1</math>. How many positive integers are factors of <math>N</math>?
  
 
<math>\textbf{(A)}\ 3\qquad
 
<math>\textbf{(A)}\ 3\qquad
Line 464: Line 474:
  
 
== See also ==
 
== See also ==
* [[AHSME]]
 
* [[AHSME Problems and Solutions]]
 
 
* [[AMC 12 Problems and Solutions]]
 
* [[AMC 12 Problems and Solutions]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
 +
{{AHSME box|year=1986|before=[[1985 AHSME]]|after=[[1987 AHSME]]}} 
 +
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 17:30, 12 October 2023

1986 AHSME (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 30-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 5 points for each correct answer, 2 points for each problem left unanswered, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have 90 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Problem 1

$[x-(y-z)] - [(x-y) - z] =$

$\textbf{(A)}\ 2y \qquad \textbf{(B)}\ 2z \qquad \textbf{(C)}\ -2y \qquad \textbf{(D)}\ -2z \qquad \textbf{(E)}\ 0$

Solution

Problem 2

If the line $L$ in the $xy$-plane has half the slope and twice the $y$-intercept of the line $y = \frac{2}{3} x + 4$, then an equation for $L$ is:

$\textbf{(A)}\ y = \frac{1}{3} x + 8 \qquad \textbf{(B)}\ y = \frac{4}{3} x + 2 \qquad \textbf{(C)}\ y =\frac{1}{3}x+4\qquad\\  \textbf{(D)}\ y =\frac{4}{3}x+4\qquad \textbf{(E)}\ y =\frac{1}{3}x+2$

Solution

Problem 3

$\triangle ABC$ has a right angle at $C$ and $\angle A = 20^\circ$. If $BD$ ($D$ in $\overline{AC}$) is the bisector of $\angle ABC$, then $\angle BDC =$

$\textbf{(A)}\ 40^\circ \qquad \textbf{(B)}\ 45^\circ \qquad \textbf{(C)}\ 50^\circ \qquad \textbf{(D)}\ 55^\circ\qquad \textbf{(E)}\ 60^\circ$

Solution

Problem 4

Let S be the statement "If the sum of the digits of the whole number $n$ is divisible by $6$, then $n$ is divisible by $6$."

A value of $n$ which shows $S$ to be false is

$\textbf{(A)}\ 30 \qquad \textbf{(B)}\ 33 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 42 \qquad \textbf{(E)}\ \text{ none of these}$

Solution

Problem 5

Simplify $\left(\sqrt[6]{27} - \sqrt{6 \frac{3}{4} }\right)^2$

$\textbf{(A)}\ \frac{3}{4} \qquad \textbf{(B)}\ \frac{\sqrt 3}{2} \qquad \textbf{(C)}\ \frac{3\sqrt 3}{4}\qquad \textbf{(D)}\ \frac{3}{2}\qquad \textbf{(E)}\ \frac{3\sqrt 3}{2}$

Solution

Problem 6

Using a table of a certain height, two identical blocks of wood are placed as shown in Figure 1. Length $r$ is found to be $32$ inches. After rearranging the blocks as in Figure 2, length $s$ is found to be $28$ inches. How high is the table?

[asy] size(300); defaultpen(linewidth(0.8)+fontsize(13pt)); path table = origin--(1,0)--(1,6)--(6,6)--(6,0)--(7,0)--(7,7)--(0,7)--cycle; path block = origin--(3,0)--(3,1.5)--(0,1.5)--cycle; path rotblock = origin--(1.5,0)--(1.5,3)--(0,3)--cycle; draw(table^^shift((14,0))*table); filldraw(shift((7,0))*block^^shift((5.5,7))*rotblock^^shift((21,0))*rotblock^^shift((18,7))*block,gray); draw((7.25,1.75)--(8.5,3.5)--(8.5,8)--(7.25,9.75),Arrows(size=5)); draw((21.25,3.25)--(22,3.5)--(22,8)--(21.25,8.25),Arrows(size=5)); unfill((8,5)--(8,6.5)--(9,6.5)--(9,5)--cycle); unfill((21.5,5)--(21.5,6.5)--(23,6.5)--(23,5)--cycle); label("$r$",(8.5,5.75)); label("$s$",(22,5.75)); [/asy]

$\textbf{(A) }28\text{ inches}\qquad\textbf{(B) }29\text{ inches}\qquad\textbf{(C) }30\text{ inches}\qquad\textbf{(D) }31\text{ inches}\qquad\textbf{(E) }32\text{ inches}$

Solution

Problem 7

The sum of the greatest integer less than or equal to $x$ and the least integer greater than or equal to $x$ is $5$. The solution set for $x$ is

$\textbf{(A)}\ \Big\{\frac{5}{2}\Big\}\qquad \textbf{(B)}\ \big\{x\ |\ 2 \le x \le 3\big\}\qquad \textbf{(C)}\ \big\{x\ |\ 2\le x < 3\big\}\qquad\\  \textbf{(D)}\ \Big\{x\ |\ 2 < x\le 3\Big\}\qquad \textbf{(E)}\ \Big\{x\ |\ 2 < x < 3\Big\}$

Solution

Problem 8

The population of the United States in $1980$ was $226,504,825$. The area of the country is $3,615,122$ square miles. There are $(5280)^{2}$ square feet in one square mile. Which number below best approximates the average number of square feet per person?

$\textbf{(A)}\ 5,000\qquad \textbf{(B)}\ 10,000\qquad \textbf{(C)}\ 50,000\qquad \textbf{(D)}\ 100,000\qquad \textbf{(E)}\ 500,000$

Solution

Problem 9

The product $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\ldots\left(1-\frac{1}{9^{2}}\right)\left(1-\frac{1}{10^{2}}\right)$ equals

$\textbf{(A)}\ \frac{5}{12}\qquad \textbf{(B)}\ \frac{1}{2}\qquad \textbf{(C)}\ \frac{11}{20}\qquad \textbf{(D)}\ \frac{2}{3}\qquad \textbf{(E)}\ \frac{7}{10}$

Solution

Problem 10

The $120$ permutations of $AHSME$ are arranged in dictionary order as if each were an ordinary five-letter word. The last letter of the $86$th word in this list is:

$\textbf{(A)}\ \text{A} \qquad \textbf{(B)}\ \text{H} \qquad \textbf{(C)}\ \text{S} \qquad \textbf{(D)}\ \text{M}\qquad \textbf{(E)}\ \text{E}$

Solution

Problem 11

In $\triangle ABC, AB = 13, BC = 14$ and $CA = 15$. Also, $M$ is the midpoint of side $AB$ and $H$ is the foot of the altitude from $A$ to $BC$. The length of $HM$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair H=origin, A=(0,6), B=(-4,0), C=(5,0), M=B+3.6*dir(B--A); draw(B--C--A--B^^M--H--A^^rightanglemark(A,H,C)); label("A", A, NE); label("B", B, W); label("C", C, E); label("H", H, S); label("M", M, dir(M)); [/asy]

$\textbf{(A)}\ 6\qquad \textbf{(B)}\ 6.5\qquad \textbf{(C)}\ 7\qquad \textbf{(D)}\ 7.5\qquad \textbf{(E)}\ 8$

Solution

Problem 12

John scores $93$ on this year's AHSME. Had the old scoring system still been in effect, he would score only $84$ for the same answers. How many questions does he leave unanswered? (In the new scoring system that year, one received $5$ points for each correct answer, $0$ points for each wrong answer, and $2$ points for each problem left unanswered. In the previous scoring system, one started with $30$ points, received $4$ more for each correct answer, lost $1$ point for each wrong answer, and neither gained nor lost points for unanswered questions.)

$\textbf{(A)}\ 6\qquad \textbf{(B)}\ 9\qquad \textbf{(C)}\ 11\qquad \textbf{(D)}\ 14\qquad \textbf{(E)}\ \text{Not uniquely determined}$

Solution

Problem 13

A parabola $y = ax^{2} + bx + c$ has vertex $(4,2)$. If $(2,0)$ is on the parabola, then $abc$ equals

$\textbf{(A)}\ -12\qquad \textbf{(B)}\ -6\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 12$

Solution

Problem 14

Suppose hops, skips and jumps are specific units of length. If $b$ hops equals $c$ skips, $d$ jumps equals $e$ hops, and $f$ jumps equals $g$ meters, then one meter equals how many skips?

$\textbf{(A)}\ \frac{bdg}{cef}\qquad \textbf{(B)}\ \frac{cdf}{beg}\qquad \textbf{(C)}\ \frac{cdg}{bef}\qquad \textbf{(D)}\ \frac{cef}{bdg}\qquad \textbf{(E)}\ \frac{ceg}{bdf}$

Solution

Problem 15

A student attempted to compute the average, $A$, of $x, y$ and $z$ by computing the average of $x$ and $y$, and then computing the average of the result and $z$. Whenever $x < y < z$, the student's final result is

$\textbf{(A)}\ \text{correct}\quad \textbf{(B)}\ \text{always less than A}\quad \textbf{(C)}\ \text{always greater than A}\quad\\ \textbf{(D)}\ \text{sometimes less than A and sometimes equal to A}\quad\\ \textbf{(E)}\ \text{sometimes greater than A and sometimes equal to A}  \quad$

Solution

Problem 16

In $\triangle ABC, AB = 8, BC = 7, CA = 6$ and side $BC$ is extended, as shown in the figure, to a point $P$ so that $\triangle PAB$ is similar to $\triangle PCA$. The length of $PC$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, P=(1.5,5), B=(8,0), C=P+2.5*dir(P--B); draw(A--P--C--A--B--C); label("A", A, W); label("B", B, E); label("C", C, NE); label("P", P, NW); label("6", 3*dir(A--C), SE); label("7", B+3*dir(B--C), NE); label("8", (4,0), S); [/asy]

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 11$

Solution

Problem 17

A drawer in a darkened room contains $100$ red socks, $80$ green socks, $60$ blue socks and $40$ black socks. A youngster selects socks one at a time from the drawer but is unable to see the color of the socks drawn. What is the smallest number of socks that must be selected to guarantee that the selection contains at least $10$ pairs? (A pair of socks is two socks of the same color. No sock may be counted in more than one pair.)

$\textbf{(A)}\ 21\qquad \textbf{(B)}\ 23\qquad \textbf{(C)}\ 24\qquad \textbf{(D)}\ 30\qquad \textbf{(E)}\ 50$

Solution

Problem 18

A plane intersects a right circular cylinder of radius $1$ forming an ellipse. If the major axis of the ellipse is $50\%$ longer than the minor axis, the length of the major axis is

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ \frac{3}{2}\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ \frac{9}{4}\qquad \textbf{(E)}\ 3$

Solution

Problem 19

A park is in the shape of a regular hexagon $2$ km on a side. Starting at a corner, Alice walks along the perimeter of the park for a distance of $5$ km. How many kilometers is she from her starting point?

$\textbf{(A)}\ \sqrt{13}\qquad \textbf{(B)}\ \sqrt{14}\qquad \textbf{(C)}\ \sqrt{15}\qquad \textbf{(D)}\ \sqrt{16}\qquad \textbf{(E)}\ \sqrt{17}$

Solution

Problem 20

Suppose $x$ and $y$ are inversely proportional and positive. If $x$ increases by $p\%$, then $y$ decreases by

$\textbf{(A)}\ p\%\qquad \textbf{(B)}\ \frac{p}{1+p}\%\qquad \textbf{(C)}\ \frac{100}{p}\%\qquad \textbf{(D)}\ \frac{p}{100+p}\%\qquad \textbf{(E)}\ \frac{100p}{100+p}\%$

Solution

Problem 21

In the configuration below, $\theta$ is measured in radians, $C$ is the center of the circle, $BCD$ and $ACE$ are line segments and $AB$ is tangent to the circle at $A$.

[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(0,-1), E=(0,1), C=(0,0), D=dir(10), F=dir(190), B=(-1/sin(10*pi/180))*dir(10); fill(Arc((0,0),1,10,90)--C--D--cycle,mediumgray); fill(Arc((0,0),1,190,270)--B--F--cycle,mediumgray); draw(unitcircle); draw(A--B--D^^A--E); label("$A$",A,S); label("$B$",B,W); label("$C$",C,SE); label("$\theta$",C,SW); label("$D$",D,NE); label("$E$",E,N); [/asy]

A necessary and sufficient condition for the equality of the two shaded areas, given $0 < \theta < \frac{\pi}{2}$, is

$\textbf{(A)}\ \tan \theta = \theta\qquad \textbf{(B)}\ \tan \theta = 2\theta\qquad \textbf{(C)}\ \tan\theta = 4\theta\qquad \textbf{(D)}\ \tan 2\theta =\theta\qquad\\  \textbf{(E)}\ \tan\frac{\theta}{2}=\theta$

Solution

Problem 22

Six distinct integers are picked at random from $\{1,2,3,\ldots,10\}$. What is the probability that, among those selected, the second smallest is $3$?

$\textbf{(A)}\ \frac{1}{60}\qquad \textbf{(B)}\ \frac{1}{6}\qquad \textbf{(C)}\ \frac{1}{3}\qquad \textbf{(D)}\ \frac{1}{2}\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 23

Let $N = 69^{5} + 5 \cdot 69^{4} + 10 \cdot 69^{3} + 10 \cdot 69^{2} + 5 \cdot 69 + 1$. How many positive integers are factors of $N$?

$\textbf{(A)}\ 3\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 69\qquad \textbf{(D)}\ 125\qquad \textbf{(E)}\ 216$

Solution

Problem 24

Let $p(x) = x^{2} + bx + c$, where $b$ and $c$ are integers. If $p(x)$ is a factor of both $x^{4} + 6x^{2} + 25$ and $3x^{4} + 4x^{2} + 28x + 5$, what is $p(1)$?

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ 8$

Solution

Problem 25

If $\lfloor x\rfloor$ is the greatest integer less than or equal to $x$, then $\sum_{N=1}^{1024} \lfloor \log_{2}N\rfloor =$

$\textbf{(A)}\ 8192\qquad \textbf{(B)}\ 8204\qquad \textbf{(C)}\ 9218\qquad \textbf{(D)}\ \lfloor\log_{2}(1024!)\rfloor\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 26

It is desired to construct a right triangle in the coordinate plane so that its legs are parallel to the $x$ and $y$ axes and so that the medians to the midpoints of the legs lie on the lines $y = 3x + 1$ and $y = mx + 2$. The number of different constants $m$ for which such a triangle exists is

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ 3\qquad \textbf{(E)}\ \text{more than 3}$

Solution

Problem 27

In the adjoining figure, $AB$ is a diameter of the circle, $CD$ is a chord parallel to $AB$, and $AC$ intersects $BD$ at $E$, with $\angle AED = \alpha$. The ratio of the area of $\triangle CDE$ to that of $\triangle ABE$ is

[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(-1,0), B=(1,0), E=(0,-.4), C=(.6,-.8), D=(-.6,-.8), E=(0,-.8/(1.6)); draw(unitcircle); draw(A--B--D--C--A); draw(Arc(E,.2,155,205)); label("$A$",A,W); label("$B$",B,C); label("$C$",C,C); label("$D$",D,W); label("$\alpha$",E-(.2,0),W); label("$E$",E,N); [/asy]

$\textbf{(A)}\ \cos\ \alpha\qquad \textbf{(B)}\ \sin\ \alpha\qquad \textbf{(C)}\ \cos^2\alpha\qquad \textbf{(D)}\ \sin^2\alpha\qquad \textbf{(E)}\ 1-\sin\ \alpha$

Solution

Problem 28

$ABCDE$ is a regular pentagon. $AP, AQ$ and $AR$ are the perpendiculars dropped from $A$ onto $CD, CB$ extended and $DE$ extended, respectively. Let $O$ be the center of the pentagon. If $OP = 1$, then $AO + AQ + AR$ equals

[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair O=origin, A=2*dir(90), B=2*dir(18), C=2*dir(306), D=2*dir(234), E=2*dir(162), P=(C+D)/2, Q=C+3.10*dir(C--B), R=D+3.10*dir(D--E), S=C+4.0*dir(C--B), T=D+4.0*dir(D--E); draw(A--B--C--D--E--A^^E--T^^B--S^^R--A--Q^^A--P^^rightanglemark(A,Q,S)^^rightanglemark(A,R,T)); dot(O); label("$O$",O,dir(B)); label("$1$",(O+P)/2,W); label("$A$",A,dir(A)); label("$B$",B,dir(B)); label("$C$",C,dir(C)); label("$D$",D,dir(D)); label("$E$",E,dir(E)); label("$P$",P,dir(P)); label("$Q$",Q,dir(Q)); label("$R$",R,dir(R)); [/asy]

$\textbf{(A)}\ 3\qquad \textbf{(B)}\ 1 + \sqrt{5}\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 2 + \sqrt{5}\qquad \textbf{(E)}\ 5$

Solution

Problem 29

Two of the altitudes of the scalene triangle $ABC$ have length $4$ and $12$. If the length of the third altitude is also an integer, what is the biggest it can be?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 30

The number of real solutions $(x,y,z,w)$ of the simultaneous equations $2y = x + \frac{17}{x}, 2z = y + \frac{17}{y}, 2w = z + \frac{17}{z}, 2x = w + \frac{17}{w}$ is

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 16$

Solution

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
1985 AHSME
Followed by
1987 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png