Difference between revisions of "2017 AMC 8 Problems/Problem 25"

m (Video Solutions)
m (Solution & Video)
(9 intermediate revisions by 6 users not shown)
Line 31: Line 31:
 
label("$Y$", Y, E);
 
label("$Y$", Y, E);
 
</asy>
 
</asy>
We can clearly see that <math>\triangle UXY</math> is an equilateral triangle, because the problem states that <math>m\angle TUS = 60^\circ</math>. We can figure out that <math>m\angle SXR= 60^\circ</math> and <math>m\angle TYR = 60^\circ</math> because they are <math>\frac{1}{6}</math> of a circle. The area of the figure is equal to <math>[\triangle UXY]</math> minus the combined area of the <math>2</math> sectors of the circles(in red). Using the area formula for an equilateral triangle, <math>\frac{a^2\sqrt{3}}{4},</math> where <math>a</math> is the side length of the equilateral triangle, <math>[\triangle UXY]</math> is <math>\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.</math> The combined area of the <math>2</math> sectors is <math>2\cdot\frac16\cdot\pi r^2</math>, which is <math>\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.</math> Thus, our final answer is <math>\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.</math>
+
We can clearly see that <math>\triangle UXY</math> is an equilateral triangle, because the problem states that <math>m\angle TUS = 60^\circ</math>. We can figure out that <math>m\angle SXR= 60^\circ</math> and <math>m\angle TYR = 60^\circ</math> because they are <math>\frac{1}{6}</math> of a circle. The area of the figure is equal to <math>[\triangle UXY]</math> minus the combined area of the <math>2</math> sectors of the circles (in red). Using the area formula for an equilateral triangle, <math>\frac{a^2\sqrt{3}}{4},</math> where <math>a</math> is the side length of the equilateral triangle, <math>[\triangle UXY]</math> is <math>\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.</math> The combined area of the <math>2</math> sectors is <math>2\cdot\frac16\cdot\pi r^2</math>, which is <math>\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.</math> Thus, our final answer is <math>\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.</math>
  
 
==Solution 2==
 
==Solution 2==
Line 47: Line 47:
  
 
- Happytwin
 
- Happytwin
 
https://youtu.be/uvwLT5xBNdU
 
 
~DSA_Catachu
 
  
 
https://youtu.be/aE0oAq4Q_Ks
 
https://youtu.be/aE0oAq4Q_Ks
Line 60: Line 56:
 
~savannahsolver
 
~savannahsolver
  
==Video Solution by OmegaLearn==
+
=Solution 3 & Video=
 +
 
 +
First, we must make it like an equilateral triangle. If you add two of the same arcs, you will get an equilateral triangle. The goal is to find ONE of the arcs and multiply it by two. Then subtract it from the equilateral triangle. If you look at the triangle, T and S are midpoints of the equilateral triangle. So now we can find the arc.These arcs are <math>\frac{2}{6}\pi</math> so now you multiply by 2 so <math>\frac{4}{3}\pi</math>. And subtract. Equilateral's area is <math>4\sqrt{3}</math>. So now you do <math>4 \sqrt 3 - \frac{4}{3} \pi</math>. That is the answer and thank you.
 +
 
 +
~ math.is.hard.to.understand
 +
 
 +
Here's a video to understand it (credits to ~ pi_is_3.14)
 +
 
 
https://youtu.be/j3QSD5eDpzU?t=1350
 
https://youtu.be/j3QSD5eDpzU?t=1350
 
~ pi_is_3.14
 
  
 
==See Also==
 
==See Also==

Revision as of 20:00, 16 January 2024

Problem

In the figure shown, $\overline{US}$ and $\overline{UT}$ are line segments each of length 2, and $m\angle TUS = 60^\circ$. Arcs $\overarc{TR}$ and $\overarc{SR}$ are each one-sixth of a circle with radius 2. What is the area of the region shown?

[asy]draw((1,1.732)--(2,3.464)--(3,1.732)); draw(arc((0,0),(2,0),(1,1.732))); draw(arc((4,0),(3,1.732),(2,0))); label("$U$", (2,3.464), N); label("$S$", (1,1.732), W); label("$T$", (3,1.732), E); label("$R$", (2,0), S);[/asy]

$\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}$

Solution 1

Let the centers of the circles containing arcs $\overarc{SR}$ and $\overarc{TR}$ be $X$ and $Y$, respectively. Extend $\overline{US}$ and $\overline{UT}$ to $X$ and $Y$, and connect point $X$ with point $Y$. [asy] unitsize(1 cm); pair U,S,T,R,X,Y; U =(2,3.464); S=(1,1.732); T=(3,1.732); R=(2,0); X=(0,0); Y=(4,0); draw(U--S); draw(S--U--T); draw(S--X--Y--T,red); draw(arc(X,R,S),red); draw(arc(Y,T,R),red); label("$U$",U, N); label("$S$", S, W); label("$T$", T, E); label("$R$", R, S); label("$X$",X, W); label("$Y$", Y, E); [/asy] We can clearly see that $\triangle UXY$ is an equilateral triangle, because the problem states that $m\angle TUS = 60^\circ$. We can figure out that $m\angle SXR= 60^\circ$ and $m\angle TYR = 60^\circ$ because they are $\frac{1}{6}$ of a circle. The area of the figure is equal to $[\triangle UXY]$ minus the combined area of the $2$ sectors of the circles (in red). Using the area formula for an equilateral triangle, $\frac{a^2\sqrt{3}}{4},$ where $a$ is the side length of the equilateral triangle, $[\triangle UXY]$ is $\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.$ The combined area of the $2$ sectors is $2\cdot\frac16\cdot\pi r^2$, which is $\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.$ Thus, our final answer is $\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.$

Solution 2

[asy]draw((1,1.732)--(2,3.464)--(3,1.732)); draw(arc((0,0),(2,0),(1,1.732))); draw(arc((4,0),(3,1.732),(2,0))); label("$U$", (2,3.464), N); label("$S$", (1,1.732), W); label("$T$", (3,1.732), E); label("$R$", (2,0), S);[/asy]

In addition to the given diagram, we can draw lines $\overline{SR}$ and $\overline{RT}.$ The area of rhombus $SRTU$ is half the product of its diagonals, which is $\frac{2\sqrt3 \cdot 2}{2}=2\sqrt3$. However, we have to subtract off the circular segments. The area of those can be found by computing the area of the circle with radius 2, multiplying it by $\frac{1}{6}$, then finally subtracting the area of an equilateral triangle with a side length 2 from the sector. The sum of the areas of the circular segments is $2(\frac{4 \pi}{6}-\sqrt3).$ The area of rhombus $SRTU$ minus the circular segments is $2\sqrt3-\frac{4 \pi}{3}+2\sqrt3= \boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.$

~PEKKA

Video Solutions

https://youtu.be/LT4gyH--328

https://youtu.be/wc5rGulTTR8

- Happytwin

https://youtu.be/aE0oAq4Q_Ks

https://euclideanmathcircle.wixsite.com/emc1/videos?wix-vod-video-id=3a7970c3cd01453aa4263a8be7998588&wix-vod-comp-id=comp-kn8844mv

https://youtu.be/sVclz6EmpEU

~savannahsolver

Solution 3 & Video

First, we must make it like an equilateral triangle. If you add two of the same arcs, you will get an equilateral triangle. The goal is to find ONE of the arcs and multiply it by two. Then subtract it from the equilateral triangle. If you look at the triangle, T and S are midpoints of the equilateral triangle. So now we can find the arc.These arcs are $\frac{2}{6}\pi$ so now you multiply by 2 so $\frac{4}{3}\pi$. And subtract. Equilateral's area is $4\sqrt{3}$. So now you do $4 \sqrt 3 - \frac{4}{3} \pi$. That is the answer and thank you.

~ math.is.hard.to.understand

Here's a video to understand it (credits to ~ pi_is_3.14)

https://youtu.be/j3QSD5eDpzU?t=1350

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png