Difference between revisions of "2020 AMC 10B Problems/Problem 24"

(Solution 8)
m (Solution 1)
 
(34 intermediate revisions by 6 users not shown)
Line 8: Line 8:
  
 
==Solution 1==
 
==Solution 1==
First notice that the graphs of <math>(n+1000)/70</math> and <math>\sqrt[]{n}</math> intersect at 2 points. Then, notice that <math>(n+1000)/70</math> must be an integer, since it is equal to the floor of <math>n</math>. This means that n is congruent to <math>50 \pmod{70}</math>.
 
 
For the first intersection, testing the first few values of <math>n</math> (adding <math>70</math> to <math>n</math> each time and noticing the left side increases by <math>1</math> each time) yields <math>\lfloor \sqrt{n} \rfloor=20</math> and <math>\lfloor \sqrt{n} \rfloor=21</math>, so <math>n=400, 470</math> respectively. Estimating from the graph can narrow down the other cases, being <math>\lfloor \sqrt{n} \rfloor=47</math>, <math>\lfloor \sqrt{n} \rfloor=48</math>, <math>\lfloor \sqrt{n} \rfloor=49</math>, <math>\lfloor \sqrt{n} \rfloor=50</math>, yielding <math>n=2290,2360,2430,2500</math> respectively. This results in a total of 6 cases, for an answer of <math>\boxed{\textbf{(C) }6}</math>.
 
 
~DrJoyo (edited by eagleye and vaporwave)
 
 
==Solution 2 (Graphing)==
 
 
One intuitive approach to the question is graphing. Obviously, you should know what the graph of the square root function is, and if any function is floored (meaning it is taken to the greatest integer less than a value), a stair-like figure should appear. The other function is simply a line with a slope of <math>1/70</math>. If you precisely draw out the two regions of the graph where the derivative of the square function nears the derivative of the linear function, you can now deduce that <math>3</math> values of intersection lay closer to the left side of the stair, and <math>3</math> values lay closer to the right side of the stair.
 
 
With meticulous graphing, you can realize that the answer is <math>\boxed{\textbf{(C) }6}</math>.
 
 
A in-depth graph with intersection points is linked below.
 
https://www.desmos.com/calculator/e5wk9adbuk
 
 
==Solution 3==
 
 
*Not a reliable or in-depth solution (for the guess and check students)
 
  
 
We can first consider the equation without a floor function:
 
We can first consider the equation without a floor function:
Line 39: Line 21:
 
<cmath>n^2 - 2900n + 1000000 = 0</cmath>
 
<cmath>n^2 - 2900n + 1000000 = 0</cmath>
  
Now we can use wishful thinking to determine the factors:
+
Now we can determine the factors:
  
 
<cmath>(n-400)(n-2500) = 0</cmath>
 
<cmath>(n-400)(n-2500) = 0</cmath>
Line 45: Line 27:
 
This means that for <math>n = 400</math> and <math>n = 2500</math>, the equation will hold without the floor function.
 
This means that for <math>n = 400</math> and <math>n = 2500</math>, the equation will hold without the floor function.
  
Now we can simply check the multiples of 70 around 400 and 2500 in the original equation:
+
Now we can simply check the multiples of 70 around 400 and 2500 in the original equation, which we abbreviate as <math>L=R</math>.
  
For <math>n = 330</math>, left hand side  <math>=19</math> but <math>18^2 < 330 < 19^2</math> so right hand side  <math>=18</math>
+
For <math>n = 330</math>, <math>L=19</math> but <math>18^2 < 330 < 19^2</math> so <math>R=18</math>
  
For <math>n = 400</math>, left hand side <math>=20</math> and right hand side <math>=20</math>
+
For <math>n = 400</math>,  <math>L=20</math> and  <math>R=20</math>
  
For <math>n = 470</math>, left hand side <math>=21</math> and right hand side <math>=21</math>
+
For <math>n = 470</math>,  <math>L=21</math>, <math>R=21</math>
  
For <math>n = 540</math>, left hand side  <math>=22</math> but <math>540 > 23^2</math> so right hand side  <math>=23</math>
+
For <math>n = 540</math>, <math>L=22</math> but <math>540 > 23^2</math> so   <math>R=23</math>
  
 
Now we move to <math>n = 2500</math>
 
Now we move to <math>n = 2500</math>
  
For <math>n = 2430</math>, left hand side <math>=49</math> and <math>49^2 < 2430 < 50^2</math> so right hand side  <math>=49</math>
+
For <math>n = 2430</math>,  <math>L=49</math> and <math>49^2 < 2430 < 50^2</math> so <math>R=49</math>
  
For <math>n = 2360</math>, left hand side <math>=48</math> and <math>48^2 < 2360 < 49^2</math> so right hand side  <math>=48</math>
+
For <math>n = 2360</math>,  <math>L=48</math> and <math>48^2 < 2360 < 49^2</math> so <math>R=48</math>
  
For <math>n = 2290</math>, left hand side <math>=47</math> and <math>47^2 < 2360 < 48^2</math> so right hand side <math>=47</math>
+
For <math>n = 2290</math>,  <math>L=47</math> and <math>47^2 < 2360 < 48^2</math> so  <math>R=47</math>
  
For <math>n = 2220</math>, left hand side  <math>=46</math> but <math>47^2 < 2220</math> so right hand side <math>=47</math>
+
For <math>n = 2220</math>, <math>L=46</math> but <math>47^2 < 2220</math> so  <math>R=47</math>
  
For <math>n = 2500</math>, left hand side <math>=50</math> and right hand side  <math>=50</math>
+
For <math>n = 2500</math>,  <math>L=50</math> and <math>R=50</math>
  
For <math>n = 2570</math>, left hand side  <math>=51</math> but <math>2570 < 51^2</math> so right hand side  <math>=50</math>
+
For <math>n = 2570</math>, <math>L=51</math> but <math>2570 < 51^2</math> so <math>R=50</math>
  
 
Therefore we have 6 total solutions, <math>n = 400, 470, 2290, 2360, 2430, 2500 = \boxed{\textbf{(C) 6}}</math>
 
Therefore we have 6 total solutions, <math>n = 400, 470, 2290, 2360, 2430, 2500 = \boxed{\textbf{(C) 6}}</math>
  
==Solution 4==
+
==Solution 2==
  
 
This is my first solution here, so please forgive me for any errors.
 
This is my first solution here, so please forgive me for any errors.
Line 92: Line 74:
 
-Solution By Qqqwerw
 
-Solution By Qqqwerw
  
==Solution 5==
+
==Solution 3==
  
We start with the given equation<cmath>\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor</cmath>From there, we can start with the general inequality that <math>\lfloor \sqrt{n} \rfloor \leq \sqrt{n} < \lfloor \sqrt{n} \rfloor + 1</math>. This means that<cmath>\dfrac{n+1000}{70} \leq \sqrt{n} < \dfrac{n+1070}{70}</cmath>Solving each inequality separately gives us two inequalities:<cmath>n - 70\sqrt{n} +1000 \leq 0 \rightarrow (\sqrt{n}-50)(\sqrt{n}-20)\leq 0 \rightarrow 20\leq \sqrt{n} \leq 50</cmath><cmath>n-70\sqrt{n}+1070 > 0 \rightarrow \sqrt{n} < 35-\sqrt{155} , \sqrt{n} > 35+\sqrt{155}</cmath>Simplifying and approximating decimals yields 2 solutions for one inequality and 4 for the other. Hence <math>2+4 = \boxed{\textbf{(C)} 6}</math>.
+
We start with the given equation<cmath>\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor</cmath>From there, we can start with the general inequality that <math>\lfloor \sqrt{n} \rfloor \leq \sqrt{n} < \lfloor \sqrt{n} \rfloor + 1</math>. This means that<cmath>\dfrac{n+1000}{70} \leq \sqrt{n} < \dfrac{n+1070}{70}</cmath>Solving each inequality separately gives us two inequalities:<cmath>n - 70\sqrt{n} +1000 \leq 0 \rightarrow (\sqrt{n}-50)(\sqrt{n}-20)\leq 0 \rightarrow 20\leq \sqrt{n} \leq 50</cmath><cmath>n-70\sqrt{n}+1070 > 0 \rightarrow \sqrt{n} < 35-\sqrt{155} , \sqrt{n} > 35+\sqrt{155}</cmath>Simplifying and approximating decimals yields 2 solutions for one inequality and 4 for the other. Hence, the answer is <math>2+4 = \boxed{\textbf{(C) } 6}</math>.
  
 
~Rekt4
 
~Rekt4
  
==Solution 6==
+
==Solution 4==
  
 
Let <math>n</math> be uniquely of the form <math>n=k^2+r</math> where <math>0 \le r \le 2k \; \bigstar</math>. Then, <cmath> \frac{k^2+r+1000}{70} = k</cmath> Rearranging and completeing the square gives <cmath>(k-35)^2 + r = 225</cmath> <cmath>\Rightarrow r = (k-20)(50-k)\; \smiley</cmath> This gives us <cmath>(k-35)^2 \le (k-35)^2+r=225 \le (k-35)^2 + 2k</cmath> Solving the left inequality shows that <math>20 \le k \le 50</math>. Combing this with the right inequality gives that <cmath>(k-35)^2+r=225 \le (k-35)^2 + 2k \le (k-35)^2+100 </cmath> which implies either <math>k \ge 47</math> or <math>k \le 23</math>. By directly computing the cases for <math>k = 20, 21, 22, 23, 47, 48, 49, 50</math> using <math>\smiley</math>, it follows that only <math> k = 22, 23</math> yield and invalid <math>r</math> from <math>\bigstar</math>. Since each <math>k</math> corresponds to one <math>r</math> and thus to one <math>n</math> (from <math>\smiley</math> and the original form), there must be 6 such <math>n</math>.   
 
Let <math>n</math> be uniquely of the form <math>n=k^2+r</math> where <math>0 \le r \le 2k \; \bigstar</math>. Then, <cmath> \frac{k^2+r+1000}{70} = k</cmath> Rearranging and completeing the square gives <cmath>(k-35)^2 + r = 225</cmath> <cmath>\Rightarrow r = (k-20)(50-k)\; \smiley</cmath> This gives us <cmath>(k-35)^2 \le (k-35)^2+r=225 \le (k-35)^2 + 2k</cmath> Solving the left inequality shows that <math>20 \le k \le 50</math>. Combing this with the right inequality gives that <cmath>(k-35)^2+r=225 \le (k-35)^2 + 2k \le (k-35)^2+100 </cmath> which implies either <math>k \ge 47</math> or <math>k \le 23</math>. By directly computing the cases for <math>k = 20, 21, 22, 23, 47, 48, 49, 50</math> using <math>\smiley</math>, it follows that only <math> k = 22, 23</math> yield and invalid <math>r</math> from <math>\bigstar</math>. Since each <math>k</math> corresponds to one <math>r</math> and thus to one <math>n</math> (from <math>\smiley</math> and the original form), there must be 6 such <math>n</math>.   
Line 105: Line 87:
 
~the_jake314
 
~the_jake314
  
==Solution 7 (Sequences - Rigorous)==
+
==Solution 5==
 
 
Right away, we realize that since the floor function returns only integers,
 
<math>\frac{1000 + n}{70} </math> is also an integer.
 
 
 
<math>1000\equiv 20\pmod{70}</math>, so <math>n\equiv 50\pmod{70}</math> to make the numerator divisible by 70.
 
 
 
Let <math>S</math> be the sequence of all positive integers <math>n</math> such that <math>n\equiv 50\pmod{70}</math>, and let <math>S_j</math> be the <math>j^{th}</math> element of <math>S</math>, where <math> j \in \mathbb{N} </math>
 
 
 
As <math>S</math> is an arithmetic sequence with initial term 50 and common difference 70, the explicit formula of the sequence is <math>S_j = 50 + 70(j-1) = 70j - 20</math>.
 
 
 
<math>70j-20</math> calculates <math>n</math> for the <math>j^{th}</math> element in the sequence, so we can plug in this formula for <math>n</math>;
 
 
 
<math>\frac{1000 + 70j - 20}{70} = \lfloor \sqrt{70j-20} \rfloor</math>
 
 
 
Now we can simplify the left-hand-side:
 
 
 
<cmath>\frac{1000+70j-20}{70} = \frac{1000}{70} + \frac{70j-20}{70} = 14\frac{2}{7} + \frac{70j}{70} - \frac{20}{70} = 14 + \frac{2}{7} + j - \frac{2}{7} = 14 + j</cmath>
 
 
 
We know that for any x, <math>\lfloor x \rfloor \leq x < \lfloor x \rfloor +1</math>. Therefore:
 
 
 
<cmath>14+j \leq \sqrt{70j-20} < 15+j</cmath>
 
 
 
We can square the inequality to get <cmath> 196+28j+j^{2} \leq 70j-20 < 225 + 30j + j^{2}</cmath>
 
 
 
We can split this three-part inequality into two inequalities:
 
 
 
<cmath> j^{2} + 28j + 196 \leq 70j-20</cmath>
 
<cmath> j^{2} + 30j + 225 > 70j-20</cmath>
 
 
 
Now we can solve for each inequality and bound <math>j</math>;
 
  
<cmath> j^{2} + 28j + 196 \leq 70j - 20 \implies j^{2}-42j+216 \leq 0 </cmath>
+
Since the right-hand-side is an integer, so must be the left-hand-side. Therefore, we must have <math>n\equiv -20\pmod{70}</math>; let <math>n=70j-20</math>. The given equation becomes<cmath>j+14 = \lfloor \sqrt{70j-20} \rfloor</cmath>
<cmath>\implies (j-36)(j-6) \leq 0 \implies 6 \leq j \leq 36 </cmath> (by considering signs of <math>j-36</math> and <math>j-6</math>).
 
  
The next inequality cannot be factored so we will have to use the quadratic equation to find j:
+
Since <math>\lfloor x \rfloor \leq x < \lfloor x \rfloor +1</math> for all real <math>x</math>, we can take <math>x=\sqrt{70j-20}</math> with <math>\lfloor x \rfloor =j+14</math> to get
<cmath> j^{2} +30j+225 > 70j - 20 \implies j^{2}-40j+245 > 0</cmath>
+
<cmath>j+14 \leq \sqrt{70j-20} < j+15</cmath>
To find j, we treat the inequality as an equation: this becomes
+
We can square the inequality to get<cmath>196+28j+j^{2} \leq 70j-20 < 225 + 30j + j^{2}</cmath>
<cmath>j^{2} - 40j + 245 = 0 \implies j = \frac{40 \pm \sqrt{40^{2} - 4\cdot245}}{2} </cmath>
+
The left inequality simplifies to <math>(j-36)(j-6) \leq 0</math>, which yields <cmath>6 \le j \le 36.</cmath>
<cmath>\implies j = \frac{40 \pm \sqrt{1600-980}}{2} \implies j = \frac{40 \pm \sqrt{620}}{2} \implies j=20 \pm \sqrt{155} </cmath>
+
The right inequality simplifies to <math>(j-20)^2 - 155 > 0</math>, which yields <cmath>j < 20 - \sqrt{155} < 8 \quad \text{or} \quad j > 20 + \sqrt{155} > 32</cmath>  
  
Now we can turn it back into an inequality. These roots are a bit harder to work with than the first inequality, but we recognize that the factored form becomes <cmath>(j-(20+\sqrt{155}))(j-(20-\sqrt{155})) > 0</cmath>, and we can use signs as before to determine that the solutions for this inequality are
+
Solving <math>j < 8</math>, and <math>6 \le j \le 36</math>, we get <math>6 \le j < 8</math>, for <math>2</math> values <math>j\in \{6, 7\}</math>.
  
<math>j < 20-\sqrt{155}</math> and <math> j > 20+\sqrt{155}</math>.
+
Solving <math>j >32</math>, and <math>6 \le j \le 36</math>, we get <math>32 < j \le 36</math>, for <math>4</math> values <math>k\in \{33, \ldots , 36\}</math>.
 +
 +
Thus, our answer is <math>2 + 4 = \boxed{\textbf{(C) }6}</math>
  
Because <math>j</math> can only have positive integer values, we can approximate <math>20-\sqrt{155}</math> as between 7 and 8, and we can approximate <math>20 + \sqrt{155}</math> as between 32 and 33.
 
 
We can then write the stricter inequalities <math> j \leq 7 </math> and <math> j \geq 33 </math>.
 
 
Overall, <math>6 \leq j \leq 36</math>, <math>j \leq 7</math>, and <math>j \geq 33</math>, so the only possible solutions for <math>j</math> are 6, 7, 33, 34, 35, and 36. Because each valid solution for <math>j</math> is a valid solution for <math>n</math>, we have 6 solutions for <math>n</math> that satisfy the given equation, or <math>\boxed{\textbf{(C)} 6}</math>.
 
  
 
~KingRavi
 
~KingRavi
  
==Solution 8==
+
==Solution 6 ==
 
 
General solution to this type of equation <math>f(x, \lfloor x \rfloor) = 0</math>:
 
 
 
1. solve <math>f(x, \lfloor x \rfloor) = 0</math> for <math>x</math> to get <math>x = g(\lfloor x \rfloor )</math>
 
2. apply <math>\lfloor x \rfloor \le x < \lfloor x \rfloor+1</math>, solve <math>\lfloor x \rfloor \le g(\lfloor x \rfloor) < \lfloor x \rfloor+1</math> to get the domain of <math>\lfloor x \rfloor</math>
 
3. get <math> \lfloor x \rfloor</math> from the domain of <math> \lfloor x \rfloor</math> because <math> \lfloor x \rfloor</math> is integer, then get <math>x</math> from <math> \lfloor x \rfloor</math> by <math>x = g( \lfloor x \rfloor) </math>
 
Note: function <math>\lfloor x \rfloor</math> maps <math>x</math> to its floor. By solving <math>f(x, \lfloor x \rfloor) = 0</math>, we get function <math>x = g( \lfloor x \rfloor) </math>, mapping <math>x</math>'s floor to <math>x</math>
 
 
 
<math>n + 1000 = 70 \cdot \lfloor \sqrt{n} \rfloor</math>
 
 
 
Let <math>\sqrt{n} = x > 0</math>, <math>x^2 + 1000 = 70 \cdot \lfloor x \rfloor</math>
 
 
 
<math>x = \sqrt{70 \cdot \lfloor x \rfloor - 1000}</math>
 
 
 
Let <math>k = \lfloor x \rfloor \ge 0</math>
 
  
<math>k \le \sqrt{70k - 1000} < k + 1</math>
+
Set <math>x=\sqrt{n}</math> in the given equation and solve for <math>x</math> to get <math>x^2 = 70 \cdot \lfloor x \rfloor - 1000</math>. Set <math>k = \lfloor x \rfloor \ge 0</math>; since <math>\lfloor x \rfloor^2 \le x^2 < (\lfloor x \rfloor + 1)^2</math>, we get  <cmath>k^2 \le  70k - 1000 < k^2 + 2k + 1.</cmath>
 +
The left inequality simplifies to <math>(k-20)(k-50) \le 0</math>, which yields <cmath>20 \le k \le 50.</cmath>
 +
The right inequality simplifies to <math>(k-34)^2 > 155</math>, which yields <cmath>k < 34 - \sqrt{155} < 22 \quad \text{or} \quad k > 34 + \sqrt{155} > 46</cmath>
 +
Solving <math>k < 22</math>, and <math>20 \le k \le 50</math>, we get <math>20 \le k < 22</math>, for <math>2</math> values <math>k\in \{20, 21\}</math>.
  
<math>k^2 \le 70k - 1000 < k^2 + 2k + 1</math>
+
Solving <math>k >46</math>, and <math>20 \le k \le 50</math>, we get <math>46 < k \le 50</math>, for <math>4</math> values <math>k\in \{47, \ldots , 50\}</math>.
  
<math>0 \le -k^2 + 70k - 1000 < 2k + 1</math>
+
Thus, our answer is <math>2 + 4 = \boxed{\textbf{(C) }6}</math>
  
<math>0 \le -k^2 + 70k - 1000</math>
+
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
  
<math>k^2 -70k + 1000 \le 0</math>
+
==Solution 7 ==
  
<math>(k-20)(k-50) \le 0</math>
 
  
<math>20 \le k \le 50</math>
+
If <math>n</math> is a perfect square, we can write <math>n = k^2</math> for a positive integer <math>k</math>, so <math>\lfloor \sqrt{n} \rfloor = \sqrt{n} = k.</math> The given equation turns into
  
<math>-k^2 + 70k - 1000 < 2k + 1</math>
+
\begin{align*}
 +
\frac{k^2 + 1000}{70} &= k \
 +
k^2 - 70k + 1000 &= 0 \
 +
(k-20)(k-50) &= 0,
 +
\end{align*}
  
<math>k^2 - 68k + 1001 > 0</math>
+
so <math>k = 20</math> or <math>k= 50</math>, so <math>n = 400, 2500.</math>
  
<math>k^2 - 2 \cdot 34k + 1156 + 1001 -1156 > 0</math>
+
If <math>n</math> is not square, then we can say that, for a positive integer <math>k</math>, we have
 +
\begin{align*}
 +
k^2 < &n < (k+1)^2 \\
 +
k^2 + 1000 < &n + 1000  = 70\lfloor \sqrt{n} \rfloor = 70k< (k+1)^2 + 1000 \
 +
k^2 + 1000 < &70k < (k+1)^2 + 1000.
 +
\end{align*}
  
<math>(k-34)^2 - 155 > 0</math>
+
To solve this inequality, we take the intersection of the two solution sets to each of the two inequalities
 +
<math>k^2 + 1000 < 70k</math> and <math>70k < (k+1)^2 + 1000</math>. To solve the first one, we have
  
<math>(k-34 - \sqrt{155})()k-34 + \sqrt{155}>0</math>
+
\begin{align*}
 +
k^2 - 70k + 1000 &< 0 \
 +
(k-20)(k-50) &< 0\
 +
\end{align*}
 +
<math>k\in (20, 50),</math> because the portion of the parabola between its two roots will be negative.
  
<cmath>k < 46 \quad k < 22 \quad \text{or} \quad k > 46 \quad k > 22</cmath>
+
The second inequality yields
  
<cmath>\Downarrow</cmath>
+
\begin{align*}
 +
70k &< k^2 + 2k + 1 + 1000 \
 +
0 &< k^2 -68k + 1001.
 +
\end{align*}
 +
This time, the inequality will hold for all portions of the parabola that are not on or between the its two roots, which are <math>34 + \sqrt{155}>46</math> and <math>34-\sqrt{155}<22</math> (they are roughly equal, but this is to ensure that we do not miss any solutions).
  
<cmath>k < 22 \quad \text{or} \quad k > 46</cmath>
+
Notation wise, we need all integers <math>k</math> such that
  
<math>k < 22</math>, <math>20 \le k \le 50</math>, <math>20 /le k < 22</math>, <math>2</math> values of <math>k</math>
+
<cmath>k \in \left(20, 50\right) \cap \left(-\infty,34 - \sqrt{155} \right)</cmath>
 +
or
 +
<cmath>k \in \left(20, 50\right) \cap \left(34 + \sqrt{155}, \infty \right).</cmath>
  
<math>k > 46</math>, <math>20 \le k \le 50</math>, <math>20 /le k < 22</math>, <math>4</math> values of <math>k</math>
+
For the first one, since our uppoer bound is a little less than <math>22</math>, the <math>k</math> that works is <math>21</math>. For the second, our lower bound is a little more than <math>46</math>, so the <math>k</math> that work are <math>47, 48,</math> and  <math>49</math>.
  
<math>2 + 4 = \boxed{\textbf{(C) }6}</math>
+
<math>\boxed{\textbf{(C) }6}</math> total solutions for <math>n</math>, since each value of <math>k</math> corresponds to exactly one value of <math>n</math>.
  
~isabelchen
+
-Benedict T (countmath1)
  
 
==Video Solutions==
 
==Video Solutions==

Latest revision as of 09:26, 9 March 2024

The following problem is from both the 2020 AMC 10B #24 and 2020 AMC 12B #21, so both problems redirect to this page.

Problem

How many positive integers $n$ satisfy \[\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?\](Recall that $\lfloor x\rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32$

Solution 1

We can first consider the equation without a floor function:

\[\dfrac{n+1000}{70} = \sqrt{n}\]

Multiplying both sides by 70 and then squaring:

\[n^2 + 2000n + 1000000 = 4900n\]

Moving all terms to the left:

\[n^2 - 2900n + 1000000 = 0\]

Now we can determine the factors:

\[(n-400)(n-2500) = 0\]

This means that for $n = 400$ and $n = 2500$, the equation will hold without the floor function.

Now we can simply check the multiples of 70 around 400 and 2500 in the original equation, which we abbreviate as $L=R$.

For $n = 330$, $L=19$ but $18^2 < 330 < 19^2$ so $R=18$

For $n = 400$, $L=20$ and $R=20$

For $n = 470$, $L=21$, $R=21$

For $n = 540$, $L=22$ but $540 > 23^2$ so $R=23$

Now we move to $n = 2500$

For $n = 2430$, $L=49$ and $49^2 < 2430 < 50^2$ so $R=49$

For $n = 2360$, $L=48$ and $48^2 < 2360 < 49^2$ so $R=48$

For $n = 2290$, $L=47$ and $47^2 < 2360 < 48^2$ so $R=47$

For $n = 2220$, $L=46$ but $47^2 < 2220$ so $R=47$

For $n = 2500$, $L=50$ and $R=50$

For $n = 2570$, $L=51$ but $2570 < 51^2$ so $R=50$

Therefore we have 6 total solutions, $n = 400, 470, 2290, 2360, 2430, 2500 = \boxed{\textbf{(C) 6}}$

Solution 2

This is my first solution here, so please forgive me for any errors.

We are given that \[\frac{n+1000}{70}=\lfloor\sqrt{n}\rfloor\]

$\lfloor\sqrt{n}\rfloor$ must be an integer, which means that $n+1000$ is divisible by $70$. As $1000\equiv 20\pmod{70}$, this means that $n\equiv 50\pmod{70}$, so we can write $n=70k+50$ for $k\in\mathbb{Z}$.

Therefore, \[\frac{n+1000}{70}=\frac{70k+1050}{70}=k+15=\lfloor\sqrt{70k+50}\rfloor\]

Also, we can say that $\sqrt{70k+50}-1 < k+15$ and $k+15\leq\sqrt{70k+50}$

Squaring the second inequality, we get $k^{2}+30k+225\leq70k+50\implies k^{2}-40k+175\leq 0\implies (k-5)(k-35)\leq0\implies 5\leq k\leq 35$.

Similarly solving the first inequality gives us $k < 19-\sqrt{155}$ or $k > 19+\sqrt{155}$

$\sqrt{155}$ is larger than $12$ and smaller than $13$, so instead, we can say $k\leq 6$ or $k\geq 32$.

Combining this with $5\leq k\leq 35$, we get $k=5,6,32,33,34,35$ are all solutions for $k$ that give a valid solution for $n$, meaning that our answer is $\boxed{\textbf{(C) 6}}$. -Solution By Qqqwerw

Solution 3

We start with the given equation\[\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor\]From there, we can start with the general inequality that $\lfloor \sqrt{n} \rfloor \leq \sqrt{n} < \lfloor \sqrt{n} \rfloor + 1$. This means that\[\dfrac{n+1000}{70} \leq \sqrt{n} < \dfrac{n+1070}{70}\]Solving each inequality separately gives us two inequalities:\[n - 70\sqrt{n} +1000 \leq 0 \rightarrow (\sqrt{n}-50)(\sqrt{n}-20)\leq 0 \rightarrow 20\leq \sqrt{n} \leq 50\]\[n-70\sqrt{n}+1070 > 0 \rightarrow \sqrt{n} < 35-\sqrt{155} , \sqrt{n} > 35+\sqrt{155}\]Simplifying and approximating decimals yields 2 solutions for one inequality and 4 for the other. Hence, the answer is $2+4 = \boxed{\textbf{(C) } 6}$.

~Rekt4

Solution 4

Let $n$ be uniquely of the form $n=k^2+r$ where $0 \le r \le 2k \; \bigstar$. Then, \[\frac{k^2+r+1000}{70} = k\] Rearranging and completeing the square gives \[(k-35)^2 + r = 225\] \[\Rightarrow r = (k-20)(50-k)\; \smiley\] This gives us \[(k-35)^2 \le (k-35)^2+r=225 \le (k-35)^2 + 2k\] Solving the left inequality shows that $20 \le k \le 50$. Combing this with the right inequality gives that \[(k-35)^2+r=225 \le (k-35)^2 + 2k \le (k-35)^2+100\] which implies either $k \ge 47$ or $k \le 23$. By directly computing the cases for $k = 20, 21, 22, 23, 47, 48, 49, 50$ using $\smiley$, it follows that only $k = 22, 23$ yield and invalid $r$ from $\bigstar$. Since each $k$ corresponds to one $r$ and thus to one $n$ (from $\smiley$ and the original form), there must be 6 such $n$.


~the_jake314

Solution 5

Since the right-hand-side is an integer, so must be the left-hand-side. Therefore, we must have $n\equiv -20\pmod{70}$; let $n=70j-20$. The given equation becomes\[j+14 = \lfloor \sqrt{70j-20} \rfloor\]

Since $\lfloor x \rfloor \leq x < \lfloor x \rfloor +1$ for all real $x$, we can take $x=\sqrt{70j-20}$ with $\lfloor x \rfloor =j+14$ to get \[j+14 \leq \sqrt{70j-20} < j+15\] We can square the inequality to get\[196+28j+j^{2} \leq 70j-20 < 225 + 30j + j^{2}\] The left inequality simplifies to $(j-36)(j-6) \leq 0$, which yields \[6 \le j \le 36.\] The right inequality simplifies to $(j-20)^2 - 155 > 0$, which yields \[j < 20 - \sqrt{155} < 8 \quad \text{or} \quad j > 20 + \sqrt{155} > 32\]

Solving $j < 8$, and $6 \le j \le 36$, we get $6 \le j < 8$, for $2$ values $j\in \{6, 7\}$.

Solving $j >32$, and $6 \le j \le 36$, we get $32 < j \le 36$, for $4$ values $k\in \{33, \ldots , 36\}$.

Thus, our answer is $2 + 4 = \boxed{\textbf{(C) }6}$


~KingRavi

Solution 6

Set $x=\sqrt{n}$ in the given equation and solve for $x$ to get $x^2 = 70 \cdot \lfloor x \rfloor - 1000$. Set $k = \lfloor x \rfloor \ge 0$; since $\lfloor x \rfloor^2 \le x^2 < (\lfloor x \rfloor + 1)^2$, we get \[k^2 \le  70k - 1000 < k^2 + 2k + 1.\] The left inequality simplifies to $(k-20)(k-50) \le 0$, which yields \[20 \le k \le 50.\] The right inequality simplifies to $(k-34)^2 > 155$, which yields \[k < 34 - \sqrt{155} < 22 \quad \text{or} \quad k > 34 + \sqrt{155} > 46\] Solving $k < 22$, and $20 \le k \le 50$, we get $20 \le k < 22$, for $2$ values $k\in \{20, 21\}$.

Solving $k >46$, and $20 \le k \le 50$, we get $46 < k \le 50$, for $4$ values $k\in \{47, \ldots , 50\}$.

Thus, our answer is $2 + 4 = \boxed{\textbf{(C) }6}$

~isabelchen

Solution 7

If $n$ is a perfect square, we can write $n = k^2$ for a positive integer $k$, so $\lfloor \sqrt{n} \rfloor = \sqrt{n} = k.$ The given equation turns into

k2+100070=kk270k+1000=0(k20)(k50)=0,

so $k = 20$ or $k= 50$, so $n = 400, 2500.$

If $n$ is not square, then we can say that, for a positive integer $k$, we have k2<n<(k+1)2k2+1000<n+1000=70n=70k<(k+1)2+1000k2+1000<70k<(k+1)2+1000.

To solve this inequality, we take the intersection of the two solution sets to each of the two inequalities $k^2 + 1000 < 70k$ and $70k < (k+1)^2 + 1000$. To solve the first one, we have

k270k+1000<0(k20)(k50)<0 $k\in (20, 50),$ because the portion of the parabola between its two roots will be negative.

The second inequality yields

70k<k2+2k+1+10000<k268k+1001. This time, the inequality will hold for all portions of the parabola that are not on or between the its two roots, which are $34 + \sqrt{155}>46$ and $34-\sqrt{155}<22$ (they are roughly equal, but this is to ensure that we do not miss any solutions).

Notation wise, we need all integers $k$ such that

\[k \in \left(20, 50\right) \cap \left(-\infty,34 - \sqrt{155} \right)\] or \[k \in \left(20, 50\right) \cap \left(34 + \sqrt{155}, \infty \right).\]

For the first one, since our uppoer bound is a little less than $22$, the $k$ that works is $21$. For the second, our lower bound is a little more than $46$, so the $k$ that work are $47, 48,$ and $49$.

$\boxed{\textbf{(C) }6}$ total solutions for $n$, since each value of $k$ corresponds to exactly one value of $n$.

-Benedict T (countmath1)

Video Solutions

Video Solution 1

On The Spot STEM: https://youtu.be/BEJybl9TLMA

Video Solution 2

https://www.youtube.com/watch?v=VWeioXzQxVA&list=PLLCzevlMcsWNcTZEaxHe8VaccrhubDOlQ&index=9 ~ MathEx

Video Solution 3 by the Beauty of Math

https://youtu.be/4RVYoeiyC4w?t=62

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png