Difference between revisions of "2023 AMC 12A Problems/Problem 18"
(→Solution 1) |
m (→Video Solution by Problem Solving Channel) |
||
(21 intermediate revisions by 7 users not shown) | |||
Line 38: | Line 38: | ||
draw(circle((0.25,0),1), gray(0.7)); | draw(circle((0.25,0),1), gray(0.7)); | ||
draw(circle((0,6/7),3/28), gray(0.7)); | draw(circle((0,6/7),3/28), gray(0.7)); | ||
− | pair A = (0,0), B = (-0.25,0), C = (0.25,0), D = (0,6/7), | + | pair A = (0,0), B = (-0.25,0), C = (0.25,0), D = (0,6/7), EE = (-0.95710678118, 0.70710678118), F = (0.95710678118, -0.70710678118), G = (0,0), T=(0.75,0); |
− | |||
dot(D); | dot(D); | ||
dot(G); | dot(G); | ||
− | draw(B-- | + | draw(B--EE, dashed+gray(0.7)); |
draw(C--F, dashed+gray(0.7)); | draw(C--F, dashed+gray(0.7)); | ||
dot(C, gray(0.9)); | dot(C, gray(0.9)); | ||
Line 49: | Line 48: | ||
draw(A--D); | draw(A--D); | ||
draw(B--D); | draw(B--D); | ||
+ | draw(B--T); | ||
label("$\frac{1}{4}$", (-0.125, -0.125)); | label("$\frac{1}{4}$", (-0.125, -0.125)); | ||
label("$r + \frac{3}{4}$", (0.2, 3/7)); | label("$r + \frac{3}{4}$", (0.2, 3/7)); | ||
label("$1 - r$", (-0.29, 3/7)); | label("$1 - r$", (-0.29, 3/7)); | ||
+ | label("$O$",A,S); | ||
+ | label("$A$",B,S); | ||
+ | dot("$B$",C,S); | ||
+ | dot("$T$",T,E); | ||
+ | label("$1$", (-.85, 0.70)); | ||
+ | label("$1$", (.85, -.7)); | ||
markscalefactor=0.005; | markscalefactor=0.005; | ||
</asy> | </asy> | ||
Line 76: | Line 82: | ||
~ShawnX (Diagram) | ~ShawnX (Diagram) | ||
+ | |||
+ | ~ap246 (Minor Changes) | ||
+ | |||
+ | ==Video Solution by OmegaLearn== | ||
+ | https://youtu.be/jcHeJXs9Sdw | ||
+ | |||
+ | ==Video Solution by MegaMath== | ||
+ | |||
+ | https://www.youtube.com/watch?v=lHyl_JtbSuQ&t=8s | ||
+ | |||
+ | ~megahertz13 | ||
+ | |||
+ | == Video Solution by CosineMethod [🔥Fast and Easy🔥]== | ||
+ | |||
+ | https://www.youtube.com/watch?v=rnuL3sVU5aU | ||
==Video Solution by epicbird08== | ==Video Solution by epicbird08== | ||
Line 91: | Line 112: | ||
~IceMatrix | ~IceMatrix | ||
+ | |||
+ | ==Video Solution by Problem Solving Channel== | ||
+ | https://youtu.be/7Wg-_79LepU | ||
+ | |||
+ | ~ProblemSolvingChannel | ||
+ | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2023|ab=A|num-b=21|num-a=23}} | {{AMC10 box|year=2023|ab=A|num-b=21|num-a=23}} | ||
Line 96: | Line 123: | ||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] |
Revision as of 22:54, 20 April 2024
- The following problem is from both the 2023 AMC 10A #22 and 2023 AMC 12A #18, so both problems redirect to this page.
Contents
Problem
Circle and each have radius , and the distance between their centers is . Circle is the largest circle internally tangent to both and . Circle is internally tangent to both and and externally tangent to . What is the radius of ?
Solution
Let be the center of the midpoint of the line segment connecting both the centers, say and .
Let the point of tangency with the inscribed circle and the right larger circles be .
Then
Since is internally tangent to , center of , and their tangent point must be on the same line.
Now, if we connect centers of , and /, we get a right angled triangle.
Let the radius of equal . With the pythagorean theorem on our triangle, we have
Solving this equation gives us
~lptoggled
~ShawnX (Diagram)
~ap246 (Minor Changes)
Video Solution by OmegaLearn
Video Solution by MegaMath
https://www.youtube.com/watch?v=lHyl_JtbSuQ&t=8s
~megahertz13
Video Solution by CosineMethod [🔥Fast and Easy🔥]
https://www.youtube.com/watch?v=rnuL3sVU5aU
Video Solution by epicbird08
~EpicBird08
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by TheBeautyofMath
~IceMatrix
Video Solution by Problem Solving Channel
~ProblemSolvingChannel
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.